Spatial Econometric Analysis Using GAUSS

Spatial Econometric Analysis Using GAUSS

Spatial Econometric Analysis Using GAUSS 6 Kuan-Pin Lin Portland State Univerisity Model Estimation Spatial Error Model Spatial AR(1) y X yXI y X (I W ) 1 yXI WyXI E ( | X, W ) 0 2 Var ( | X,W ) I Var (yXI | X,W ) 2 2 (I W ) '(I W ) 1 Cov(WyXI, ) W (I W ) 0

1 Model Estimation Spatial Error Model Spatial MA(1) y X yXI y X (I W ) yXI W E ( | X, W ) 0 Var ( | X, W ) 2 I Var (yXI | X, W ) 2 (I W )(I W ) ' Model Estimation Spatial Error Model Spatial ARMA(1,1) y X yXI y X (I W ) 1 (I W ) yXI WyXI W E ( | X,W ) 0 Var ( | X, W ) 2 I Var (yXI | X, W ) 2 (I W ) 1 (I W )(I W ) '(I W ) 1 ' Spatial Error AR(1) Model Maximum Likelihood Estimation Normal

Density Function 2 (I W )y (I W ) X ~ normal iid (0, I) f (y ) f ( ) f ( ) I W y ' n 1 ' f () exp 2 2 2 2 (I W )(y X) Spatial Error AR(1) Model Maximum Likelihood Estimation Log-Likelihood Function n n L(, , ; y, X, W ) ln(2 ) ln( 2 ) 2

2 (y X) '(I W ) '(I W )( y X) ln I W 2 2 2 n ln I W i 1 ln(1 i ) 1 , 2 ,..., n are eigenvalues of W Stability : 1/ min 1/ max 1 Spatial Error AR(1) Model Maximum Likelihood Estimation Quasi Maximum Likelihood (QML) Estimator ( ', , 2 ) ' max arg L(, , 2 ; y, X, W ) ) L ( ) (

Var ' 1 ) L( ) L( ) L( ' ' ' 2 (I W )(y X), n 2 2 1 Spatial Error AR(1) Model Maximum Likelihood Estimation Generalization to consider spatial MA(1) and

spatial ARMA(1,1) is straightforward. n n yXI ' J ' JyXI 2 L ln(2 ) ln( ) ln J 2 2 2 2 yXI y X J SPAR(1) (I-W) SPMA(1) (I+W)-1 SPARMA(1,1) (I+W)-1(I-W) Crime Equation Anselin (1988) [anselin.8] Spatial Error Model: AR, MA, ARMA

(Crime Rate) = + (Family Income) + (Housing Value) + = W + or = W + SPAR(1) QML Parameter SPAR(1) QML s.e 0.56178 0.14142 SPMA(1) QML Parameter SPMA(1) QML s.e 0.79909 0.24514

-0.94131 0.43774 -0.92181 0.41823 -0.30225 0.16214 -0.28739 0.14551 59.893 5.0994 59.253 5.4177 L

-183.38 -183.07 Crime Equation Anselin (1988) [anselin.8] QML Estimator: SPLAG(1) vs. SPAR(1) SPAR(1) QML Parameter SPAR(1) QML s.e 0.56178 0.14142 SPLAG(1) QML Parameter SPLAG(1)

QML s.e 0.43101 0.12962 -0.94131 0.43774 -1.0316 0.42108 -0.30225 0.16214 -0.26593 0.17309 59.893

5.0994 45.080 6.4051 L -183.38 -182.39 Spatial Error AR(1) Model Generalized Method of Moments Moment Functions (Kelejian and Prucha, 1998) y X yXI yXI WyXI yXI y X ( X ' X) 1 X ' y yXI WyXI W E (' ) 2I E ( ' ) W [ E (' )]W ' 2WW ' E ( ' ) W [ E (' )] 2W Spatial Error AR(1) Model Generalized Method of Moments

Sample Moment Functions 1 n 2 2 trace(WW ') i 1 i n 1 n 2 trace(W ) 0 i 1 i i n 1 n 2 i 1i2 n n i i j 1 wij j

n i j 1 wij j Spatial Error AR(1) Model Generalized Method of Moments Nonlinear GMM: 1 Parameter, 2 Equations min arg Q ( ) where Q ( ) m( ) ' m( ) is positive definite 1 n m( ) i 1 mi ( ) n mi ( ) m( ; yi , xi' , , W ) i2 i2trace(WW ') ii i 1, 2,..., n Spatial Error AR(1) Model Generalized Method of Moments Nonlinear GMM: 1 Parameter, 2 Equations Let G ( ) m( ) Q( )

2G ( ) m( ) 0 2Q( ) 2G ( ) G ( ) positive definite ' 1 Var ( ) G ( )' G ( ) G ( ) ' Var (m( )) 'G ( ) G ( ) ' G ( ) 1 Spatial Error AR(1) Model Generalized Method of Moments Minimum Distance (MD) Estimator min arg Q( ) where Q ( ) m( ) ' m( ) 1 ' ' ' Var ( ) G ( ) G ( ) G ( ) Var ( m( )) G ( ) G ( ) G ( ) Efficient GMM Estimator

min arg Q( ) where Q( ) m( ) '[Var (m( ))] 1 m( ) ' 1 Var ( ) G ( ) Var (m( )) G ( ) 1 1 Spatial Error AR(1) Model Generalized Method of Moments Estimation of the variance-covariance matrix of moment functions Var (m( )) E (m( )m( ) ') Var (m( )) can be consistently estimated by 1 n n ' k m (

) m j ( ) 2 i 1 j 1 ij i n where mi ( ) m( ; yi , xi' , ,W ) kij K (dij / d ) or kij K (d ij / d max ) dij kij (kii 1, kij 0) Model Estimation Spatial Error Model Spatial AR(1) Model y X yXI yXI WyXI Estimate and simultaneously: QML Estimate and iteratively: GMM/GLS OLS GMM

GLS Crime Equation Anselin (1988) [anselin.9] Spatial Error AR(1) Model (Crime Rate) = + (Family Income) + (Housing Value) + = W + GMM vs. QML Estimator GMM Parameter GMM s.e QML Parameter QML s.e 0.54904 0.10596

0.56179 0.14142 -0.95537 0.33081 -0.94131 0.43774 -0.30193 0.09017 -0.30225 0.16214 60.096 5.3245

59.893 5.0994 Q 0.06979 References H. Kelejian and I. R. Prucha,1998. A Generalized Spatial Two-stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbance. Journal of Real Estate Finance and Economics, 17, 99-121. L.F.Lee 2003. Best Spatial Two-stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances. Econometrics Reviews, 22, 307-335. L.F. Lee, 2007. GMM and 2SLS Estimation of Mixed Regressive Spatial Autoregressive Models. Journal of Econometrics, 137, 489514.

Recently Viewed Presentations

  • Georgia and the American Experience

    Georgia and the American Experience

    Smith-Hughes Act: helped establish vocational schools for youth ... Malcolm X preached black separatism. Race riots in Los Angeles, Detroit, and Newark. ... An aide to Dr. Martin Luther King, Jr. and Executive director of the SCLC. In 1972, won...
  • The Wars of Religion - pptpalooza.net

    The Wars of Religion - pptpalooza.net

    The Wars of Religion (1560s-1648) Ms. Susan M. Pojer Horace Greeley H. S. Chappaqua, NY Civil War In France (1562-1598) The Valois Family: The Beginning of the End Henri II was the last powerful Valois Three weak sons followed: Francis...
  • 1 Strategy Formulation Strategy Implementation /  Strategy Map

    1 Strategy Formulation Strategy Implementation / Strategy Map

    Title: PowerPoint Presentation Author: User Last modified by: owner Created Date: 1/3/1980 6:20:25 PM Document presentation format: นำเสนอทางหน้าจอ
  • Titel På Foredrag

    Titel På Foredrag

    I spend a huge amount of time writing things down, yes. I really do. […] It's also because we're going to have to do an exam and we're allowed to take our notes with us, so you can search for...
  • Presentation for Sorensen Institute Class of 2007 State ...

    Presentation for Sorensen Institute Class of 2007 State ...

    An Overview Of Virginia's Budget Issues Presentation for Thomas Jefferson Institute's 2007 Innovations in Government Conference Jody M. Wagner
  • Standard vs General - Maths Class

    Standard vs General - Maths Class

    Mathematics Standard vs Mathematics General. STANDARD. PRELIMINARY. HSC (Gen 2) Focus Studies. STANDARD 1. HSC (Gen 1) NEW. Key. Based on Mathematics Standard Stage Syllabus, NESA, 2017. This is not an authorised NESA document. It was developed for the purposes...
  • İnşaat Mühendi̇sli̇ği̇ne Gi̇ri̇ş

    İnşaat Mühendi̇sli̇ği̇ne Gi̇ri̇ş

    The water required for drinking and the one required for irrigation is not need to be in the same quality. The requirement of quality of water depends on its area of usage. We have to control water pollution and prevent...
  • 29 September 2014 THE 3 PS: Interactions There

    29 September 2014 THE 3 PS: Interactions There

    Iterative (a.k.a. Agile) Many iterations. Each iteration is on a fixed cycle. Typically biweekly. Used for projects with . lots of small independent, but well understood, changes. small development team. strong client involvement