Overview of Climate Predictions and Projections Program Climate

Overview of Climate Predictions and Projections Program Climate

Overview of Climate Predictions and Projections Program Climate Mission Outcome A predictive understanding of the global climate system on time scales of weeks to decades with quantified uncertainties sufficient for making informed and reasoned decisions (Criteria for success: progress measured by indicators of predictive understanding and skill scores) Future New and Improved Products (preliminary modeling work going on for most of these already) Climate Improved intraseasonal to seasonal to decadal forecasts Scenarios for future climate mitigation and adaptation studies Assessments of potential for abrupt changes - surprises Utilization of Earth System models in expanding product suite Water resource & drought forecasts including nutrient runoff Climate related health and disease forecasts Projections of sea level changes Ecosystems Ecological assessments and predictions from climate change Fisheries productivity forecasts that incorporate the effects of climate Improved assessments of sea level change on coastal resources and ecosystems Forecasts and mitigation strategies related to air/water quality and quantity in coastal zone

Weather and Water Improved 10-14 day forecasts Regional and continental scale air-quality and atmospheric chemistry predictions Improved forecasts for water resources (droughts, floods) including interactions with estuaries and coasts Functional Structure of Predictions and Projections Program (Seasonal to Interannual Component Shown) New and Improved Products Information Products Operational Forecasts Test Bed - transition to operations Systematic Research forecasts and applications (Research PMs) establish systematic research multi-model SI prediction activity establish multi-model Hydrological prediction system Routine Attribution reports Test application models drought, fire, water Improve consolidation tools Multi-model-based predictability studies Predictability studies Experimental predictions

Studies supporting process research Data Distribution capability Process research, hypothesis testing and diagnostic studies Targeted efforts for improving climate models (CPTs, parameterizations,) Field experiments in support of model improvements & CPTs global tropical interactions with new focus on Indo-Pacific and Atlantic regions Monsoon related studies Emerging applications (coastal ecosystems; air quality; fisheries,) Model & Data Assimilation System Development in Environmental Modeling Program Observations, reanalyses, forcings research What can lead to improvements in S/I forecasts - our strategy

Develop a (community) research strategy (FY06/Q2) Improved dynamical prediction models Enhanced use of ensemble information from a single model Multi-model ensembles Improved empirical prediction tools Improvements in consolidation procedures Improved SST predictions Climate Nowcasts (Dynamical OCN) Predictability beyond ENSO SSTs A Number of Approaches can Improve Skill Scores: Example - Objective Consolidation Tool Pink: Operational Forecasts (avg. score ~ 17) Blue: Objective consolidation forecast tool (avg. score~23) Proposed Structure for Improving Skill of SI Forecasts: Metric for incorporation into operations: improves skill over period of operational forecasts Operational SI Forecasts/Skill Objective Consolidation Tool

Empirical Methods OCN CFS Research Foci Dynamical OCN Objective Consolidation Tool Assessment Multimodel CDC/IRI/ Research SI Forecasts/Skill Priorities Next 1-5 years resulting from our & CLIVAR planning in 5 year research plans - NCEP needs?

Seasonal to Interannual (working towards regional capabilities) 1. Improve skill of SI predictions Establish systematic community based multi-model forecasting capability/infrastructure Incorporate impacts of Indo-Pacific and Atlantic SST anomalies Develop dynamical understanding of trends incorporate in forecasts 2. Implement routine attribution capability 3. Develop seasonal hydrological forecasting capability (a national drought prediction experiment) 4. Predictive understanding of influence of climate on environment (a new focus)

Coastal ecosystems and fisheries regimes Decadal to Centennial- working towards regional capabilities where possible 1. Develop experimental decadal trends forecasts resulting from predictive understanding of anthropogenic and natural variations (Atlantic focus) also links directly to SI predictions 2. Attribution of climate of 20th C to natural versus anthropogenic influences 3. Understanding past decadal variability & abrupt changes 4. Reduce uncertainty in future projections 5. Implement earth system modeling capability

Intraseasonal Forecasting 1. Improve week2 skill scores 2. Develop capability to predict extremes for weeks 2,3,4. 3. Predictive understanding of climate on statistics of extremes (hurricanes & others) Uses of Multi-model Ensembles Research - forecasts and AMIP runs A distributed activity Application models: hydrology, etc. Attribution and predictability studies Research forecasts

The above need to be more systematic and be linked to other national/international activities COPES CliPAS (APEC-Korea) C20C runs others Climate Testbed centralized activity Operations MM Ensemble for Attribution and Predictability Assessments What NOAA supported activities currently exist Seasonal Diagnostics Consortium Continuously updated AMIP runs forced with global SSTs. Participating models are from NCEP, GFDL, CDC (running CCM3), IRI, GMAO, and ECPC Although updating the AMIP runs is a distributed activity, centralized collection of data and display of basic results is done at CPC C20C simulations with different natural and anthropogenic forcings

Need to formalize predictability studies and link to NCPO research programs MM Ensemble for Predictions What NOAA supported activities currently exist: MM ensemble predictions at IRI (based on tier-2 approach with skill assessments for participating models obtained from AMIP simulations) Empirical-Dynamical SI prediction System at CDC (based on a set of tier-2 AMIP model runs) Both are distributed approaches. Both are pragmatic in the sense that there is no consistent set of hindcasts. There are strong ties with the multi-model attribution and predictability assessment activities. Need to have a formal comparison of these forecasts with the operational approaches MM Ensembles for Predictions: Future What more is desirable A multi-model tier-1 prediction capability that would include several national coupled models A consensus among participating entities as to what is required to achieve a 1-tier multi-model ensemble goal, e.g.,

What should be the length for the hindcasts? Need for a consistent ODA? Minimum size of ensemble for each coupled model? Distributed or centralized activity? What gets implemented on Test Bed? What can be achieved under the available resource? And if enough resources are not available, does meeting requirements halfway still beneficial (e.g., reduced length of hindcasts)? OR it HAS to be an all or nothing approach. MM for regional downscaling (S-I, CC scenarios) Linking to application models, e.g., hydrological predictions

Recently Viewed Presentations

  • Approaches to Learning

    Approaches to Learning

    This is still a popular theory among many psychologists Bruner's scaffolding To Bruner the role of the adult was important in children's learning Scaffolding was his idea that adults can help children find their way to the top of a...
  • Chapter 10 Questions - Thomas County Schools

    Chapter 10 Questions - Thomas County Schools

    Chapter 10 Questions. Pg. 188. ... Name 4 line of sight and 2 path of travel restrictions you may encounter at an uncontrolled intersection. Who has the right of way at an uncontrolled intersection? Pg. 203 Preparing for the Test.
  • Socio-Economic Benefits of the Marine Natura 2000 Network

    Socio-Economic Benefits of the Marine Natura 2000 Network

    Example: climate change mitigation Saltmarshes. and . seagrasses. store high amounts of " blue carbon " They are being . degraded at a worrying pace - the degradation of tidal marshes, mangroves and seagrasses release an average of 0.45 Pg...
  • Vaccines Effects on Life Expectancy WHAT HAVE THEY

    Vaccines Effects on Life Expectancy WHAT HAVE THEY

    Basic background. Vaccines are substances inserted into the body to become immune to a disease. They were invented in 1774 by a farmer named Benjamin Jesty, but not known until later that decade by Edward Jenner.
  • Fourth Generation (4G) Wireless Systems

    Fourth Generation (4G) Wireless Systems

    Cellphones. Radio telephony existed long before cell phones became popular. 1947 - Ring and Young working at Bell Labs develop idea of using "hexagonal cells"
  • 妊娠期婦女的生理變化 - ilms.fy.edu.tw

    妊娠期婦女的生理變化 - ilms.fy.edu.tw

    婦產科護理學重點整理b班 ★產科護理學 ★婦科護理學 日期:103.4.15. 授課老師:張韶敏
  • Get the roadmap for the future of Office development

    Get the roadmap for the future of Office development

    Power your applications with Excel Workbooks as a Service . 9:00 AM. BRK3045. Use Microsoft Graph to reach users on hybrid Exchange 2016 ... Create cross-platform mobile apps with Xamarin that connect to Office Services . 4:00 PM. Friday. BRK3082....
  • Microbial Nutrition - Kennesaw State University

    Microbial Nutrition - Kennesaw State University

    Nutrient Requirements Energy Source Phototroph Uses light as an energy source Chemotroph Uses energy from the oxidation of reduced chemical compounds Nutrient Requirements Electron (Reduction potential) Source Organotroph Uses reduced organic compounds as a source for reduction potential ...