CDMA CHANNEL STRUCTURE AND MODULATION 2004.10.3 Copyright 2003,

CDMA CHANNEL STRUCTURE AND MODULATION 2004.10.3 Copyright 2003,

CDMA CHANNEL STRUCTURE AND MODULATION 2004.10.3 Copyright 2003, ZTE CORPORATION Objectives Upon completion of this lesson, the student will be able to master: -- The forward channel in IS-95 Pilot ;Sync ; Paging and Traffic -- The reverse channel in IS-95 Access; Traffic -- CDMA Call Processing -- New Channels in CDMA20001X Copyright 2003, ZTE CORPORATION CDMA Forward Traffic Channels CDMA Cell Site Pilot Forward Traffic Channel Forward Traffic Channel Sync Forward Traffic Channel Paging Forward Traffic Channel Used for the transmission of user and signaling information to a specific mobile station during a call. Maximum number of traffic channels: 64 minus one Pilot channel, one Sync channel, and 1 Paging channel. This leaves each CDMA frequency with at least 55 traffic channels. Unused paging channels can provide up to 6 additional channels. Copyright 2003, ZTE CORPORATION Forward Traffic Channel Generation 8 kb Vocoding bits symbols chips I PN CHANNEL ELEMENT 9600 bps 4800 bps 2400 bps 1200 bps (Vocoder) R = 1/2, K=9 19.2 ksps Convolutional Encoding and Repetition User Address Mask (ESN-based) Copyright 2003, ZTE CORPORATION

Block Interleaving 1.2288 Long PN Code Mcps Decimator Generation Power Control Bit Scrambling Walsh function M U X 19.2 ksps Decimator 1.2288 Mcps Q PN 800 Hz Rate 1/2, k=9 Convolutional Encoding g 0 Data Bit Input 1 2 3 4 5 6 7 g 1 8 c 0 Code Symbol Output c 1 Symbols generated as the information bits transit through the encoder, are related to all the bits

currently in the register. Each information bit contributes to multiple symbols. Pattern of inter-relationships helps detect and correct errors. The length of shift register is called constraint (K=9) length. The longer the register, the better coding can correct bursty errors Reduces power required to achieve same accuracy with coding Here, two symbols are generated for every bit input (Rate 1/2). Copyright 2003, ZTE CORPORATION Full Rate Block Interleave Array Symbols are Written In 24 Rows 16 Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 Symbols are Read Out The 384 modulation symbols in a frame are input into a 24 by 16 block interleave array read down by columns, from left to right The modulation symbols are then read out of the array in rows Copyright 2003, ZTE CORPORATION Full Rate Block Interleave Symbols are

Written In 24 Rows 16 Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 Symbols are Read Out Adjacent symbols are now separated in time This separation combats the effect of fast fading A burst of errors could effect the area in red above and after the frame is written into the block de-interleave function at the mobile we see the errors are spread out instead of being in consecutive order. Copyright 2003, ZTE CORPORATION Data Scrambling 19.2 Ksps Modulation Symbols Block Interleaver User Address Mask (ESN) Long Code PN Generator 19.2 Ksps 1.2288 Mcps 19.2 Ksps

To Power Control Mux Decimator Divide by 64 Every 64th PN chip is modulo-2 added to a symbol Randomize transmitted data Effects of all 1s or 0s' traffic (impulse-like) is reduced Eliminates probability of Pilot Reuse Error Mobile might demodulate a distant cell with same PN offset Copyright 2003, ZTE CORPORATION Power Control Subchannel Power Control Bit (800 bps) Data Scrambling M U X 19.2 Ksps from Block Interleaver 1.2288 Mcps User Long Code 19.2 Ksps Decimator Decimator Scrambled Modulation Symbol or Power Control Bit 800 Hz Mux Timing Base station receiver estimates received signal strength of mobile over a 1.25 ms period (800/s) A power control subchannel is transmitted continuously A power up/down command is sent 800 times a second A puncturing technique sends Power Control Bits at full power and uncoded Copyright 2003, ZTE CORPORATION Orthogonal Spreading Power Control Bit (800 bps) Scrambled Data 800 Hz Mux Timing M U 19.2 X Ksps

1.2288 Mcps To Quadrature Spreading Wt Walsh Function from Index Copyright 2003, ZTE CORPORATION Each symbol output from the Mux is exclusive ORd by the assigned Walsh function Walsh function has fixed chip rate of 1.2288 Mcps Result is 64 chips output for each symbol input Channels are distinguished from each other by Walsh function Bandwidth used greatly exceeds source rate Quadrature Spreading & Baseband Filtering I-Channel Pilot PN Sequence 1.2288 Mcps Baseband Filter I 19.2 ksps from Power Control Mux 1.2288 Mcps Walsh Function Q cos(2fct) G A I N Baseband Filter sin(2fct) I Q Q-Channel Pilot PN Sequence 1.2288 Mcps The forward traffic channel is combined with two different PN sequences: I and Q Baseband filtering ensures the waveforms are contained within the 1.25 MHz frequency range The final step is to convert the two baseband signals to radio frequency (RF) in the 800 MHz or 1900 MHz range Copyright 2003, ZTE CORPORATION

PCM Voice Vocoder Processing Convolutional Encoding Code Symbol Repetition (Symbol Puncturing) Block Interleaving Data Scrambling Power Control Subchannel Orthogonal Spreading Quadrature Spreading Baseband Filtering Baseband Traffic to RF Section Composite I and Q Each CHM has a combiner and works in a serial array to combine the I and Q signals for all forward channels in a partition sector or cell. Walsh Code Q PN Code Pilot Channel Walsh Code Sync Channel Walsh Code Paging Channel(s) Walsh Code Forward Traffic Channel(s) Copyright 2003, ZTE CORPORATION I PN Code Composite I Composite Q Quadrature Phase Shift Key (QPSK) Modulation I PN Code cos ( 2 fct ) Q PN Code

Every Channel : XOR : Analog sum : Baseband x Carrier Baseband filter Baseband filter Gain Control Walsh code sin (2 fct ) I1 cos ( 2 fc t ) + I2 cos (2 fc t ) = ( I1 + I2 ) cos ( 2 fc t ) Q1 sin (2 fc t ) + Q2 sin (2 fc t ) = ( Q1 + Q2 ) sin (2 fc t ) Copyright 2003, ZTE CORPORATION Forward Traffic Channel Generation (13 kb Vocoding) symbols bits chips I PN CHANNEL ELEMENT 14400 bps 7200 bps 3600 bps 1800 bps (Vocoder) Power Control Bit R = 1/2, K=9 Symbol Convolutional Block Puncturing Encoding and 28.8 (13 kb only) 19.2 Interleaving Repetition ksps ksps User Address Mask (ESN-based) Copyright 2003, ZTE CORPORATION 1.2288

Long PN Code Mcps Generation Scrambling Walsh function M U X 19.2 ksps Decimator Decimator 1.2288 Mcps Q PN 800 Hz Forward Channel Demodulation Digital Rake Receiver Chips Receiver RF Section IF, Detector RF Duplexer Traffic Correlator PN xxx Walsh xx Open Loop AGC RF Transmitter RF Section Symbols Traffic Correlator PN xxx Walsh xx Symbols Viterbi Decoder Packets Traffic Correlator PN xxx Walsh xx Audio Messages Pilot Searcher PN xxx Walsh 0 Transmit Gain Adjust Transmitter Digital Section

Long Code Gen. CPU Vocoder Audio Messages IS-95A/J-STD-008 requires a minimum of four processing elements that can be independently directed: Three elements must be capable of demodulating multipath components One must be a searcher that scans and estimates signal strength at each pilot PN sequence offset Copyright 2003, ZTE CORPORATION Pilot Channel Used by the mobile station for initial system acquisition Transmitted constantly by the base station The same Short PN sequences are shared by all base stations Each base station is differentiated by a phase offset Provides tracking of: Timing reference Phase reference Separation by phase provides for extremely high reuse within one CDMA channel frequency Acquisition by mobile stations is enhanced by: Short duration of Pilot PN sequence Uncoded nature of pilot signal Facilitates mobile station-assisted handoffs Used to identify handoff candidates Key factor in performing soft handoffs Copyright 2003, ZTE CORPORATION Pilot Channel Generation Walsh Function 0 Pilot Channel (All 0s) I PN 1.2288 Mcps Q PN The Walsh function zero spreading sequence is applied to the Pilot The use of short PN sequence offsets allows for up to 512 distinct Pilots per CDMA channel The PN offset index value (0-511 inclusive) for a given pilot PN sequence is multiplied by 64 to determine the actual offset Example: 15 (offset index) x 64 = 960 PN chips Result: The start of the pilot PN sequence will be delayed 960 chips x 0.8138 microseconds per chip = 781.25 microsecond Copyright 2003, ZTE CORPORATION Pilot Channel Acquisition Pilot Channel (Walsh Code 0) 0001

0001 0001 0001 0001 0001 The mobile station starts generating the I and Q PN short sequences by itself and correlating them with the received composite signal at every possible offset. In less than 15 seconds (typically 2 to 4 seconds) all possibilities (32,768) are checked. The mobile station remembers the offsets for which it gets the best correlation (where the Ec/Io is the best. The mobile station locks on the best pilot (at the offset that results in the best Eb/N0), and identifies the pattern defining the start of the short sequences (a 1 that follows fifteen consecutive 0s). Now the mobile station is ready to start de-correlating with a Walsh code. Copyright 2003, ZTE CORPORATION What is Ec/Io? Ec/Io Measures the strength of the pilot -25 -15 -10 Ec/Io Foretells the readability of the associated traffic channels Guides soft handoff decisions Is digitally derived as the ratio of good to total energy seen by the search correlator at the desired PN offset Never appears higher than Pilots percentage of serving cells transmitted energy Can be degraded by strong RF from other cells, sectors Can be degraded by noise Copyright 2003, ZTE CORPORATION 0 dB Ec Energy of desired pilot alone Io Total energy received Sync Channel Used to provide essential system parameters

Used during system acquisition stage Bit rate is 1200 bps Sync channel has a frame duration of 26 2/3 ms Frame duration matches the period of repetition of the PN Short Sequences Simplifies the acquisition of the Sync Channel once the Pilot Channel has been acquired Mobile Station re-synchronizes at the end of every call Copyright 2003, ZTE CORPORATION (Acquired Pilot) Sync Channel Sync Channel Generation Modulation Symbols Bits Chips Walsh Function 32 I PN R = 1/2 K=9 1200 bps Convolutional Encoder and Repetition 4800 sps Block Interleaver 4800 sps 1.2288 Mcps Q PN Copyright 2003, ZTE CORPORATION Sync Channel Message Body Format Field Copyright 2003, ZTE CORPORATION Length (bits) MSG_TYPE MSG_TYPE(00000001) (00000001) P_REV P_REV 88 88 MIN_PREV MIN_PREV SID SID

88 15 15 NID NID PILOT_PN PILOT_PN 16 16 99 LC_STATE LC_STATE SYS_TIME SYS_TIME 42 42 36 36 LP_SEC LP_SEC LTM_OFF LTM_OFF 88 66 DAYLT DAYLT PRAT PRAT 11 22 CDMA_FREQ CDMA_FREQ 11 11 Total : 170 Sync Message Parameters Message Type (MSG_TYPE) Identifies this message and determines its structure (set to the fixed value of 00000001) Protocol Revision Level (P_REV) Shall be set to 00000001 Minimum Protocol Revision Level (MIN_P_REV) 8-bit unsigned integer identifying the minimum protocol revision level required to operate on the system. Only mobile stations that support revision numbers greater than or equal to this field can access the system. System ID (SID) 16-bit unsigned integer identifying the system Network ID (NID) 16-bit unsigned integer identifying the network within the system (defined by the owner of the SID) Pilot PN Sequence Offset Index (PILOT_PN) Set to the pilot PN offset for the base station (in units of 64 chips), assigned by the network planner Long Code State (LC_STATE) Provides the mobile station with the base station long code state at the time given by the SYS_TIME field,

generated dynamically System Time (SYS_TIME) GPS system-wide time as 320 ms after the end of the last superframe containing any part of this message, minus the pilot PN offset, in units of 80 ms, generated dynamically Copyright 2003, ZTE CORPORATION Sync Channel Message Parameters (cont.) Leap Seconds (LP_SEC) Number of leap seconds that have occurred since the start of system time (January 6, 1980 at 00:00:00 hours) as given in the SYS_TIME field, generated dynamically Local Time Offset (LTM_OFF) Twos complement offset of local time from system time in units of 30 minutes, generated dynamically Current local = SYS_TIME LP_SEC + LTM_OFF Daylight savings time indicator (DAYLT) Determined by the network planner 1 if daylight savings in effect in this base station 0 otherwise Paging Channel Data Rate (PRAT) The data rate of the paging channel for this system, determined by the network planner 00 if 9600 bps 01 if 4800 bps CDMA Frequency Assignment (CDMA_FREQ) Copyright 2003, ZTE CORPORATION Paging Channels Paging Channel Used Usedby bythe thebase basestation stationto to transmit system overhead information transmit system overhead information and andmobile mobilestation-specific station-specificmessages. messages. There is one paging channel per sector per CDMA carrier The Paging Channel uses Walsh function 1 Two rates are supported: 9600 and 4800 bps Copyright 2003, ZTE CORPORATION Paging Channel Generation Walsh function R = 1/2 K=9 9600 bps 4800 bps Convolutional Encoder & Repetition Paging Channel

Address Mask Block Interleaving 1.2288 Long PN Code Mcps Generator 19.2 Ksps Scrambling Decimator I PN 1.2288 Mcps 19.2 Ksps Q PN Walsh code #1 is used to spread the data. This results in an increase to 1.2288 Mcps That is, 24,576 9600 [4800] bps x 0.020 s = 192 [96] bits in a Paging Channel frame. The Rate 1/2 convolutional encoder doubles the bit rate, resulting 384 [192] code symbols in a Paging Channel frame. If the 4800 bps rate is used, the repetition process doubles the rate again, so that, at either rate, 384 modulation symbols per Paging Channel frame result 384 modulation symbols per frame times 50 frames per second = 19.2 Ksps chips per Paging Channel frame, or 128 [256] chips per original bit at 9600 [4800] bps Copyright 2003, ZTE CORPORATION Paging Channel Time Slot Structure SCI 163.84 s 7 6 5 4 3 2 1 0 T 2 SCI = Slot Cycle Index T = Slot Cycle Length in 1.28 s 1.28 s SCI units Copyright 2003, ZTE CORPORATION

80 ms MS How to Watch Paging Channel System Time 1.28 seconds 2047 0 1 2 3 4 12 13 14 15 16 17 Paging Channel Slots Mobile Station in Non-Active State Re-acquisition of CDMA System Assigned Paging Channel Slot 80 ms Copyright 2003, ZTE CORPORATION Mobile Station in Non-Active State Paging Channel Overhead Messages ACC_MSG_SEQ Access AccessParameters ParametersMessage Message Overhead Overhead Messages Messages Paging Paging Messages Messages System SystemParameters ParametersMessage Message Configuration

Configuration Parameter Parameter Messages Messages Mobile-StationMobile-StationDirected Directed Messages Messages Copyright 2003, ZTE CORPORATION CONFIG_MSG_SEQ CDMA CDMAChannel ChannelList ListMessage Message Extended ExtendedSystem SystemParameters ParametersMessage Message Extended ExtendedNeighbor NeighborList ListMessage Message Global GlobalService ServiceRedirection RedirectionMessage Message CDMA Reverse Traffic Channels Reverse Traffic Channel Used when a call is in progress to send: Voice traffic from the subscriber Response to commands/queries from the base station Requests to the base station Supports variable data rate operation for: 8 Kbps vocoder Rate Set 1 - 9600, 4800, 2400 and 1200 bps 13 Kbps vocoder Rate Set 2 - 14400, 7200, 3600, 1800 bps Copyright 2003, ZTE CORPORATION Reverse Traffic Channel Generation at 8 kb Vocoding 9600 bps 4800 bps 2400 bps 1200 bps I PN (no offset) R=1/3,K=9 28.8 Convolutional ksps Encoder & Repetition Block Interleaver

28.8 307.2 ksps Orthogonal kcps Data Burst Randomizer Modulation 1.2288 Mcps 1/2 PN Chip Delay D User Address Mask Copyright 2003, ZTE CORPORATION Long PN Code Generator 1.2288 Mcps Q PN (no offset) Direct Sequence Spreading Rate 1/3 Convolutional Encoder g Code Symbols (OUTPUT) 0 + Information bits (INPUT) 1 2 3 4 g1 + 5 6 7 8 Code Symbols (OUTPUT) + g2 Copyright 2003, ZTE CORPORATION

Code Symbols (OUTPUT) Reverse Traffic Channel Block Interleaving 28.8 ksps From Coding & Symbol Repetition Input Array (Normal Sequence) 32 x 18 Output Array (Reordered Sequence) 32 x 18 20 ms symbol blocks are sequentially reordered Combats the effects of fast fading Separates repeated symbols at 4800 bps and below Improves survivability of symbol data Spreads the effect of spurious interference Copyright 2003, ZTE CORPORATION 28.8 ksps to Orthogonal Modulation Reverse Traffic Channel: 64-ary Orthogonal Modulation 44 35 Walsh Lookup Table Walsh Chip within a Walsh Function 1 11 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 101100 100011 Symbols 64 Chip Pattern of Walsh Code # 35 10001...11010 W a l s h F u n c t i o n I n d e x 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000

0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010

1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100

1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001

1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111

1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010

1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101

0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011

0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110

1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111

1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101

0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100

1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001

0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001

0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 0000 0101 0011 0110 1111 1010 1100 1001 0000 0101 0011 0110 1111 1010 1100 1001 1111 1010 1100 1001 0000 0101 0011 0110 For every six symbols in, 64 Walsh Chips are output Six symbols are converted to a decimal number from 0-63 The Walsh code that corresponds to the decimal number becomes the output Copyright 2003, ZTE CORPORATION Reverse Traffic Channel: Direct Sequence Spreading 307.2

kcps Data Burst Randomizer User Address Mask Copyright 2003, ZTE CORPORATION Long Code PN Generator 1.2288 Mcps To Quadrature Spreading 1.2288 Mcps Output of the randomizer is direct sequence spread by the long code The mobile station can use one of two unique long code masks: A public long code mask based on the ESN A private long code mask Offset Quadrature Spreading & Baseband Filtering RF Converters I-Channel Pilot PN Sequence 1.2288 Mcps Baseband Filter I From Data Burst Randomizer cos( fct) 2 1.2288 Mcps PN chip 1.2288 Mcps Copyright 2003, ZTE CORPORATION I Q PN D Baseband Filter 1/2 PN Chip Time Delay

Q sin(2 fct) The channel is spread by a pilot PN sequence with a zero offset Baseband filtering ensures that the waveform is contained within the required frequency limits Baseband signals converted to radio frequency (RF) in the 800 MHz or 1900 MHz range Reverse Traffic Channel Generation at 13 kb Vocoding I PN 14400 bps 7200 bps 3600 bps 1800 bps (no offset) R=1/2,K=9 Convolutional Encoder & Repetition 28.8 ksps Block Interleaver 28.8 ksps Orthogonal Modulation 307.2 kcps Data Burst Randomizer 1.2288 Mcps 1/2 PN Chip Delay D User Address Mask Copyright 2003, ZTE CORPORATION Long PN Code Generator 1.2288 Mcps Q PN (no offset) Direct Sequence Spreading Reverse Channel Demodulation Search Correlator

Demodulator Search Correlator Demodulator Demodulator Search Correlator Demodulator Search Correlator Combiner BTS Receiver BSC De-Interleaver Power Control Decision Viterbi Decoder Vocoder Speech Output U/D Command PN+ t User Long Code IS-95A/J-STD-008 requires a process that is complementary to the mobile station modulation process CDMA processing benefits from multipath components Signals from several receive elements can be combined to improve receive signal quality Copyright 2003, ZTE CORPORATION Access Channels 4800 bps Copyright 2003, ZTE CORPORATION Used by the mobile station to: Initiate communication with the base station Respond to Paging Channel messages Has a fixed data rate of 4800 bps Each Access Channel is associated with only one Paging Channel

Up to 32 access channels (0-31) are supported per Paging Channel Access Channel Generation I PN (No Offset) Access Channel Information (88 bits/Frame) 4.8 kpbs R = 1/3 Convolutional Encoder & Repetition 28.8 ksps Block Interleaver 28.8 ksps Orthogonal Modulation 307.2 kcps 1.2288 Mcps 1/2 PN Chip Delay D Access Channel Long Code Mask Copyright 2003, ZTE CORPORATION Long PN Code Generator 1.2288 Mcps Direct Sequence Spreading Q PN (No Offset) Message attempts are randomized to reduce probability of collision Two message types: A response message (in response to a base station message) A request message (sent autonomously by the mobile station) Access Channel Long Code Mask An Access Channel is scrambled by the long code, offset by a mask constructed as follows: 41 33 32 110001111 28 27 25 24

ACN PCN 98 BASE_ID 0 PILOT_PN Where: ACN is the Access Channel Number, PCN is the Number of the associated Paging Channel BASE_ID is the base station identification number, and PILOT_PN is the Pilot short PN code offset index Copyright 2003, ZTE CORPORATION Access Channel Probing Access Probe 1 + NUM_STEP (16 max) Access Probe 1 PI ACCESS PROBE SEQUENCE Access Probe 1 PI Access Probe 1 PI IP (Initial Power) Access Probe 1 System Time TA RT TA RT TA Select Access Channel (RA) See previous initialize transmit power figure Copyright 2003, ZTE CORPORATION RT TA Access Channel Probing See previous figure Access Channel Slot and Frame

Boundary ONE ACCESS CHANNEL SLOT ACCESS CHANNEL PREAMBLE (Modulation Symbol 0) ACCESS CHANNEL MESSAGE CAPSULE System Time ACCESS PROBE ACH Frame (20 ms) 1 + PAM_SZ (1 - 16 frames) 3 + MAX_CAP_SZ (3 - 10 frames) 4 + PAM_SZ + MAX_CAP_SZ (4 - 26 frames) ACTUAL ACCESS PROBE TRANSMISSION PN Randomization Delay = RN chips = RN x 0.8138 s Copyright 2003, ZTE CORPORATION Access Channel Probing Access Attempt Access Probe Sequence 1 Seq 2 Seq 3 Seq 4 Seq MAX_RSP_SEQ (15 max) RESPONSE ATTEMPT System Time RS RS RS Response message ready for transmission Access Attempt Access Probe Sequence 1 Seq 2 Seq 3 Seq MAX_REQ_SEQ (15 max) REQUEST ATTEMPT System Time PD RS

PD Request message ready for transmission Copyright 2003, ZTE CORPORATION RS PD Access Channel Probing Parameters RA - Access Channel Number. Random value between 0 and ACC_CHAN; generated before every sequence (maximum range is 0 - 31). IP Initial Open-Loop Power. Calculated in dBm as follows: IP = k - Mean Input Power (dBm) + NOM_PWR (dB) - NOM_PWR_EXT x 16 (dB) + INIT_PWR (dB) where k = -73 for 800 MHz Cellular and -76 for 1900 PCS. PI Power Increment. Equal to PWR_STEP in dB (range is 0 to 7 dB). TA Acknowledgment Response Timeout (timeout from the end of the slot). Calculated in ms as follows (range is 160 to 1360 ms): TA = 80 x (2 + ACC_TMO) RT Probe Backoff. Random value between 0 and 1 + PROBE_BKOFF; generated before every sequence (maximum range is 0 - 16 slots). RS Sequence backoff. Random value between 0 and 1 + BKOFF; generated before every sequence (except the first sequence). Maximum range of values is 0 to 16 slots PD Persistence delay. (Value used to implement the persistence test). RN PN Randomization Delay. (0 to 511 chips) . Generated before every sequence, between 0 and 2 PROBE_PN_RAN - 1, by hash, using ESN_S. Copyright 2003, ZTE CORPORATION CDMA MS Call Processing Power-Up Power-Up Initialization Initialization Mobile station has fully acquired system timing Mobile station is in idle handoff with NGHBR_CONFG equal to 011 or is unable to receive Paging Channel Message Mobile station ends use of the Traffic Channel Idle Idle Mobile station receives a Paging Channel message requiring ACK or response, originates a call, or performs registration Mobile station receives an ACK to an Access Channel transmission other than an Origination Message or a Page Response Message

System System Access Access Mobile station is directed to a Traffic Channel Copyright 2003, ZTE CORPORATION Traffic Traffic Mobile Station Originated Call Mobile Station Base Station Switch Detects user-initiated call Detects user-initiated call Sends SendsOrigination OriginationMessage Message Stops Stopsprobing probing (FW null traffic is arriving but the (FW null traffic is arriving but the mobile mobilestation stationdoes doesnot notknow knowon on what channel; therefore, the what channel; therefore, themobile mobile station stationcannot cannotstart startdecoding decodingit)it) Sets Setsup upTraffic TrafficChannel Channel ACCESS PAGING FW TRAFFIC PAGING Receives consecutive valid 5m=2 ReceivesNN 5m=2 consecutive valid frames frames Begins sending the Reverse Traffic Begins sending the Reverse Traffic RV TRAFFIC Channel

ChannelPreamble Preamble Begins Beginstransmitting transmittingnull nullReverse Reverse Traffic Channel Data Traffic Channel Data Sends SendsService ServiceRequest RequestMessage Message for Service Option for Service Option11 Copyright 2003, ZTE CORPORATION FW TRAFFIC RV TRAFFIC Sends Sendsmessage messagewith withthis this information to the information to theswitch switch Sends Base Sends BaseStation StationAcknowledgeAcknowledgement Order ment Order Sets Setsup upTraffic TrafficChannel Channel Begins Beginssending sendingnull nulltraffic traffic Sends SendsChannel ChannelAssignment Assignment Message Message Acquires Acquiresthe theReverse ReverseTraffic Traffic Channel Channel Sends SendsBase BaseStation StationAcknowledgeAcknowledgement

Order ment Order Allocates Allocatesresources resourcesfor forService Service Option 1 Option 1 Allocates Allocates resources resources Mobile Station Originated Call Base Station Mobile Station Begins Beginsprocessing processingprimary primarytraffic trafficinin accordance with Service Option accordance with Service Option11 Sends SendsService ServiceConnect Connect Completion CompletionMessage Message Optional Optional Sends SendsOrigination OriginationContinuation Continuation Message Message Switch Allocates Allocatesresources resourcesfor forService Service Option 1 Option 1 FW TRAFFIC Sends Service Connect Message Sends Service Connect Message RV TRAFFIC RV TRAFFIC Optional Optional Applies ring back from audio path Applies ring back from audio path FW TRAFFIC Optional Optional Removes ring back from audio path Removes ring back from audio path

FW TRAFFIC Optional Optional Sends SendsAlert AlertWith WithInformation Information Message (ring Message (ringback backtone) tone) Optional Optional Sends SendsAlert AlertWith WithInformation Information Message (tones Message (tonesoff) off) Message Messagesent senttotothe theswitch switch indicating that the mobile indicating that the mobilestation station isisready ready (User Conversation) Copyright 2003, ZTE CORPORATION Completes Completes the thecall call (User Conversation) Switch Mobile Station Terminated Call Mobile Station Sends Page Response Message Stops probing PAGING Base Station Sends General Page Message ACCESS PAGING Sends Base Station Acknowledgement Order Sends message to switch indicating that the mobile station has responded Sets up Traffic Channel (FW null traffic is arriving but the mobile station does not know on

what channel; therefore, the mobile station cannot start decoding it) Sets up Traffic Channel Receives N5m=2 consecutive valid frames Begins sending the Reverse Traffic Channel Preamble FW TRAFFIC PAGING RV TRAFFIC FW TRAFFIC Begins transmitting null Traffic Channel data Copyright 2003, ZTE CORPORATION Switch RV TRAFFIC Begins sending null Traffic Channel data Sends Channel Assignment Message Acquires the Reverse Traffic Channel Sends Base Station Acknowledgement Order Allocates resources Mobile Station Terminated CallSwitch Mobile Station Begins Beginstransmitting transmittingnull nullTraffic Traffic Channel data Channel data Base Station RV TRAFFIC FW TRAFFIC Allocates Allocatesresources resourcesfor forService Service Option 1 Option 1 RV TRAFFIC Sends Service Response Message Sends Service Response Message accepting acceptingService ServiceOption Option11 FW TRAFFIC

Begins Beginsprocessing processingprimary primarytraffic trafficinin accordance with Service Option accordance with Service Option11 Sends SendsService ServiceConnect Connect Completion CompletionMessage Message FW TRAFFIC RV TRAFFIC (User Conversation) Copyright 2003, ZTE CORPORATION Sends SendsService ServiceConnect ConnectMessage Message RV TRAFFIC Starts Startsringing ringing User answers User answerscall call Stops ringing Stops ringing Sends SendsConnect ConnectOrder Order Sends SendsService ServiceRequest RequestMsg Msg for Service Option for Service Option11 Sends SendsAlert AlertWith WithInformation Information Message (ring) Message (ring) Sends message to the switch Sends message to the switch indicating indicatingthat thatthe themobile mobile

station is ready station is ready Call Callproceeds proceeds (User Conversation) CDMA20001XRtt New Channel Structure Copyright 2003, ZTE CORPORATION Benefits of the CDMA2000 1x Standards Increased mobile standby battery life (via Quick Paging Channel) Total backward compatibility to reuse switch and call processing features 2-3 dB better coverage High speed 153.6 kbps packet data capabilities CDMA2000 1x = 1.25 MHz Radio Transmission Technology Copyright 2003, ZTE CORPORATION Backward Compatible with IS-95 Air Interface IS-95 mobiles are supported in the IS-2000 standard for 1xRTT: No need to change any RF infrastructure Capacity improvements will not be realized until most IS95 subscribers disappear Copyright 2003, ZTE CORPORATION Cdma2000 1xRtt Channel(Qualcomm) Copyright 2003, ZTE CORPORATION Channel List: 1xRTT vs. IS-95 IS-95B built on the IS-95A channels, and introduced two new channels Fundamental channel was the same as IS-9A traffic channel Supplemental code channels assigned to support rates above 14.4Kbps IS-2000 1xRTT continue to build on the IS-95 channels IS-95 channels continue to be supported in IS-2000 to support IS95 mobiles Forward Reverse IS-95A Pilot channel Sync channel Paging channel Forward Traffic Channel Access channel Reverse Traffic Channel IS-95B Fundamental channel Supplemental Code channel (F-SCCH)

Fundamental channel Supplemental Code channel (R-SCCH) 1xRTT Supplemental channel (F-SCH) Quick Paging channel (F-QPCH) Supplemental channel (R-SCH) Reverse Pilot channel (R-PICH) Copyright 2003, ZTE CORPORATION Forward Supplemental Channel (F-SCH) Assigned for high-speed packet data (>9.6 kbps) in the forward direction; (FCH is always assigned to each call) Up to 2 F-SCH can be assigned to a single mobile SCH cannot exist without having a fundamental channel established F-SCH supports Walsh code lengths of 4 - 1024 depending on data rate and chip rate SCH-1 File transfer at 144 kbps Mobile 1 FCH Copyright 2003, ZTE CORPORATION Voice, power control and link continuity Reverse Supplemental Channel (R-SCH) Used for high-speed packet data (>9.6 kbps) Difference between F-SCH and R-SCH is in Walsh code based spreading F-SCH supports Walsh code lengths of 4 to 128 (1xRTT) or 1024 (3xRTT) depending on data rate and chip rate R-SCH uses either a 2-digit or 4-digit Walsh code; rate matching done by repetition of encoded and interleaved symbols Walsh code allocation sequence is pre-determined and common to all mobiles Users are differentiated using long PN code with user mask Copyright 2003, ZTE CORPORATION Reverse Pilot Channel (R-PICH) Mobile transmits well-known pattern (pilot) Allows base station to do timing corrections without having to guess where mobile is (in search window) Mobile can transmit at lower power, reducing interference to others Copyright 2003, ZTE CORPORATION Quick Paging Channel (F-QPCH)

More efficient monitoring of paging channel by mobile, enhancement to slotted paging Mobile monitors QPCH to determine if there is a page forthcoming on paging channel in its slot (looks at 1-bit paging indicator) If no flag, then mobile goes back to sleep; if flag, then mobile monitors appropriate slot and decodes general page message Without QPCH, mobile must monitor regular paging channel slot and decode several fields to determine whether page is for it or not; this drains mobile batteries quickly The main purpose of QPCH is to save mobile battery life. Copyright 2003, ZTE CORPORATION The End! Copyright 2003, ZTE CORPORATION

Recently Viewed Presentations

  • Everest - Royal Geographical Society

    Everest - Royal Geographical Society

    The resulting work could be seen as co-produced. The nineteenth-century mapping of India, not only depended heavily on local labour but also drew on pre-colonial mapping traditions. Photo: Surveying in India Maclure, Macdonald & Macgregor after W.S. Sherwill.
  • ENG 312 Language Awareness: Readings for College Writers

    ENG 312 Language Awareness: Readings for College Writers

    Virtually everybody seems to sense that a mugger wouldn't be warbling bright, sunny selections from Vivaldi's Four Seasons." (Staples [2009]: 311) 96 * 96 * The G-Word "A woman could never be a "nigger" in the singular, with its connotation...
  • Experimental Psychology - University of Richmond

    Experimental Psychology - University of Richmond

    Order of APA Paper Sections The order of the sections of the manuscript are as follows: A.Title Page B.Abstract C.Introduction D.Method E.Results F.Discussion G.References H.Other Sections Appendix Tables Figure captions Figures Title Page The title page formally announces the title...
  • The Rise of Napoleon - Central Bucks School District

    The Rise of Napoleon - Central Bucks School District

    Napoleon's enemies now Unite against him. AGAIN. Britain, Russia, Prussia, join Austria, and Sweden coalition against France. 4th Coalition . In Battle of Leipzig, Germany (Oct.1813) Napoleon's army is crushed by Allies. army of inexperienced, unmotivated soldiers. Napoleon's Defeat, 1813
  • Echinodermata - Plymouth State University

    Echinodermata - Plymouth State University

    Echinodermata Classification Crinoidea--stalked, with arms Asteroids Regular stars Brittle stars Echinoidea Holothuroidea Attributes of the echinoderms Spiny skin Endoskeleton with calcareous elements Pentamerous radial symmetry Water vascular system (tube feet) Deuterostomates First opening becomes the anus Coelom is formed by...
  • Tracing Proceed of Fraud and Corrupt Enrichment, Challenges ...

    Tracing Proceed of Fraud and Corrupt Enrichment, Challenges ...

    Also known as the rule in ROSCOE v. WINDER [1915] 1 Ch. 62. This rule simply states that where a mixed fund is dissipated from the account and further money is paid into the account, the claimant/ beneficiary's money haven...
  • Scalar Measurements of Pediatric Spine and Ribs from

    Scalar Measurements of Pediatric Spine and Ribs from

    The thoracic spinal canal AP diameter is established early in life to accommodate the spinal cord. Significance. ... The Anatomy of the ribs and the sternum and their relationship to chest wall structure and function. ThoracSurgClin 2007;17:473-489.
  • Grade 8 Course Selection 2019-2020 (1) - YRDSB

    Grade 8 Course Selection 2019-2020 (1) - YRDSB

    into a Regional program, please inform the Grade 8 teacher, so they can remove the child's name from the list of outstanding Registration Forms. ... application and entrance exam took place in the fall - ends in a "Z" -...