Mdi - Ihep

Mdi - Ihep

Beam Delivery System Summary Andrei Seryi LCWS 2010 / ILC 2010 March 30, 2010 Plan of the program at ILC2010 Focus of efforts Work on parameter set for a possible new baseline Work on a prototype of the final focus at ATF2 Work on design of key technical systems of BDS ILC 2010, Mar/27/10

A. Seryi, BDS: 2 BDS & MDI presentations at ILC2010 33 presentations Including joint sessions with MDI, DR, CFS & GG and presentations during joint working sessions on SB2009 optimizations ILC 2010, Mar/27/10 A. Seryi, BDS: 3 SB2009 BDS Updates Changes in the subsystem integration of the central region: As of the RDR, the BDS, the electron source and the damping rings are clustered in the central region of the ILC accelerator complex. The proposed changes in the baseline envisage relocation of the positron source system to the downstream

end of the electron main linac, so that they also join this central region. This impacts the subsystem layout in ways that affect the implementation of electron side BDS. Changes in the baseline parameter set: Proposed adoption of the low power beam parameter set (same machine pulse repetition rate and the same bunch intensity, but a reduced number of bunches per pulse) leads to a desire to push the beam-beam parameter, so that the same luminosity as in RDR can be achieved. As a solution the so-called travelling focus scheme is being considered. ILC 2010, Mar/27/10 A. Seryi, BDS: 4 Deepa Angal-Kalinin et al Homework: Polarimeter chicane is still to be inserted

(shrink FF to keep the length) The central integration includes the sources in the same tunnel as the BDS. Relocation of the positron production system to the downstream end of the electron linac means placing it just before the beginning of the electron BDS. These changes need suitable design modifications to the layout of this area. Figure above shows the proposed new A. Seryi, BDS: 5 ILC 2010, layout Mar/27/10of the electron BDS Effect of changes for running at lower energies following the Physics Questions Committees Status Report

provided to the SB2009 Working Group of Detector colleagues B. Foster Co-Chair A. Seryi Co-Chair J. Clarke M. Harrison D. Schulte T. Tauchi ILC 2010, Mar/27/10

Brian Foster, Jim Clarke, Andrei Seryi for the Physics Question Committee AAP Review Oxford, January 6-8, 2010 A.6 Seryi, BDS: 6 Beam Parameters Rate at IP = 2.5Hz, Rate in the linac = 5Hz (every other pulse is at 150GeV/beam, for e+ production) Low luminosity at this energy reduces the physics reach ILC 2010, Mar/27/10 A.7 Seryi, BDS: 7

L,E34 SB2009 Lumi Rate at IP = 2.5Hz, Rate in the linac = 5Hz (every other pulse is at 150GeV/beam, for e+ production) Low luminosity at this energy reduces the physics reach ILC 2010, Mar/27/10

1/E 0.5/E 0.5/E Actual luminosity 0.25/E E CM A. Seryi, BDS: 8 Lumi(E) dependence in SB2009 Factor determine shape of L(E) in SB2009 Lower rep ( /2) rate below ~125GeV/beam Collimation effects: increased beam degradation at lower E due to collimation wakes and due to limit (in X) on collimation depth

Understanding the above limitations, one can suggest mitigation solutions: 1) Consider doubling the rep rate at lower energy 2) Consider Final Doublet optimized for 250GeV CM ILC 2010, Mar/27/10 A. Seryi, BDS: 9 Work on mitigations of L(E) with SB2009 during ILC2010 Have initiated discussion of double rep rate ~month before the ILC2010 Doubling the rep rate (below ~125GeV/beam) BDS WG discussed implications with other

Working Groups: DR => OK! (new conceptual DR design was presented!) Sources => OK! Linac, HLRF, Cryogenics => OK! FD optimized for ~250GeV CM Shorter FD reduce beam size in FD and increase collimation depth, reducing collimation related A. Seryi, BDS: 10 ILC 2010, Mar/27/10 beam degradation Emittance damping S. Guiducci (LNF) 1,00E-06

0 2 4 6 8 t/x 10 1,00E-07 1,00E-08 epsyf

epsxf 1,00E-09 1,00E-10 1,00E-11 1,00E-12 8 damping times are needed for the vertical emittance ILC 2010, Mar/27/10 5 Hz x = 26 ms 10 Hz x = 13 ms A. Seryi, BDS: 11

DR Parameters for 10 Hz Operation S. Guiducci (LNF) et al Circumference (m) Damping time x (ms) Emittance x (nm) Emittance y (pm) Energy loss/turn (MeV) Energy spread Bunch length (mm) RF Voltage (MV) Average current (A) Beam Power (MW) N. of RF cavities B wiggler (T) Wiggler period (m) Wiggler length (m) Total wiggler length (m)

Number of wigglers Energy = 5 GeV ILC 2010, Mar/27/10 RDR 6695 25.7 0.51 2 8.7 1.3 10 -3 9 24 0.40 3.5 18 1.67

0.4 2.45 200 80 TILC08 6476 21 0.48 2 10.3 1.3 10 -3 6 21 0.43 4.4 16 1.6 0.4

2.45 216 88 SB2009 3238 24 0.53 2 4.4 1.2 10-3 6 7.5 0.43 1.9 8 1.6 0.4 2.45

78 32 High Rep 3238 13 0.57 2 8.4 1.5 10 -3 6 13.4 0.43 3.6 16 2.4 0.28 1.72 75

44 DR (3.2km) at 10Hz is feasibl A. Seryi, BDS: 12 Double rep rate: Sources Electron Source: doubling rep rate is not critical [Axel Brachmann, Tsunehiko Omori et al] Positron Source: For SB2009 250b case there should be no issues For 250a, which is not a preferred solution, the most important consequence of the increased rep rate will be the increased average power on the positron target Even for this case there is a hope that it can be managed, but need more detailed studies [Jim Clarke, Wei Gai, et al]

ILC 2010, Mar/27/10 A. Seryi, BDS: 13 Linac and double rep rate At lower gradient, considering the cryo load (which should not be exceeded) and the efficiency of rf power sources (their efficiency decreases with power) concluded, that at 125 GeV/beam one can work at 10Hz rep rate in the linac At 150GeV/beam one can work at 8Hz in the linac Adolphsen, et al And this is possible only Chris because the e+ source is atOK

thefor endlinac of the => SB2009 replinac! rate 10 Hz for 125 GeV/beam & 8 Hz for 150 GeV/beam ILC 2010, Mar/27/10 A. Seryi, BDS: 14 Linac OK for double rep rate Chris Adolphsen: At lower gradient, it would be easy to increase the rep rate of the cavities to maintain a constant cryo load (the rep rate scales roughly as 1/gradient^2). However, one cannot readily increase the rep rate of the rf power sources as their efficiency decreases with power. In particular the klystron output power scales as

V^3.5 where V = the modulator voltage while the power flow in the modulators and klystrons scales as V^2.5, and their rep rate scales as 1/(flow*pulse width) (limited mainly by the site power capacity and the modulator charging supply ratings). For example, at half the gradient, the klystron voltage could be lowered to .5^3.5 = .82 of its nominal value and rep rate could then be increased by a factor of 1/.82^2.5 = 1.64 times the pulse width factor of ~ 1.6/1.3 (due to the shorter filling time) for a net factor of 2.0 (up to 10 Hz). There would be some additional costs associated with designing the modulators to run at a variable rep rate. However, I believe the main problem would be in the damping rings as the beams need 200 ms to be fully damped (one would need to increase the damping rate with more undulators). And of course, at low beam energy, half the pulses have to run at 150 GeV or above to generate photons to produce positrons (although such pulses probably do not have to be fully damped, the modulators would probably need to run at a constant pulse spacing). Thus with damping times of 5/8 nominal, one could perhaps run 4 Hz at 150 GeV (for e+ production) interleaved with 4 Hz of luminosity production (vs 2.5 Hz in the report) => OK per for linac

rep ratefor of 10 Hz for 125 GeV/beam & 8down Hz for at SB2009 < 150 GeV beam. Also, beam energies of 250 GeV to 150 150GeV/beam GeV, all pulses would be for luminosity and the rep rate would increase from 5 Hz to 8 Hz A. Seryi, BDS: 15

(which is an advantage of putting the undulators at the end of the linacs) ILC 2010, Mar/27/10 Cryo load is OK #1 #2 G=31.5 MV/m G=15.75 MV/m Nb=2625 Nb=1312

Ne+=2E10 Ne+=2E10 2K 8.6 W 5.5 W 4K 8.2 W 7.7 W 40K 131 W

106.8 W Total per cryomodule 9.8 kW 8.2 kW Notes: Qext(#1)=Qext(#2) Conversion: 2K=> 703 W/W 4K=> 197 W/W 40K=> 16.45 W/W ILC 2010, Mar/27/10 Ratio:

Total (#2)/ (#1) = 0.73 Nikolay Solyak: 8 Cavity losses: #1: 5.98 W (out of 8.6) #2: 2.99 W (out of 5.5) A. Seryi, BDS: 16 FD for low E FD optimized for lower energy will allow increasing the collimation depth by ~10% in Y and by ~30% in X (Very tentative!) One option would be to have a separate FD optimized for lower E, and then exchange it before going to nominal E Other option to be studied is to build a universal FD, that can be reconfigured for lower E configuration (may require splitting QD0 coil and

placing sextupoles in the middle) ILC 2010, Mar/27/10 Nominal FD & SR trajectories FD for 1/2E & SR trajectories A. Seryi, BDS: 17 Beam Parameters & mitigation Tentative! At 250 GeV CM the mitigations may give * 2 L due to double rep rate * about 1.4 L due to FD optimized for low E A. Seryi, BDS: 18 ILC 2010, Mar/27/10

18 SB2009 Lumi Linac & IP rates are 8Hz Linac rate 10Hz (IP rate 5Hz) and special FD ILC 2010, Mar/27/10 A. Seryi, BDS: 19 SB2009 optimization There are ways to increase L at low E which look promising and can be studied further The joint work of several Working Groups on double rep rate case during ILC2010 is a

very good example of workshop-style joint work! Thanks to all WGs for joint efforts ILC 2010, Mar/27/10 A. Seryi, BDS: 20 ATF2 ILC 2010, Mar/27/10 A. Seryi, BDS: 21 ATF2: model of ILC beam delivery goals: ~37nm beam size; nm level beam stability Scaled ILC final focus ATF2

Dec 2008: first pilot run; Jan 2009: hardware commissioning Feb-Apr 2009: large b; BSM laser wire mode; tuning tools commissioning Oct Seryi, BDS: ILC 2010, Mar/27/10 2009-June 2010: commission interferometer mode ofA.BSM, aim 22 ILC 2010, Mar/27/10 A. Seryi, BDS: 23 Ongoing R&Ds at ATF/ATF2 ATF

low emittance beam Tuning, XSR, SR, Laser wire, 1pm emittance (DR BPM upgrade,) Multi-bunch Instability (Fast Ion,) Extraction by Fast Kicker Others Cavity Compton SR monitor at EXT ATF2 35 nm beam size

Beam tuning (Optics modeling, Optics test, debugging soft&hard tools,) Others Cavity BPM (C&S-band, IP-BPM) Pulsed 1um Laser Wire Beam-tilt monitor Cold BPM IP-BSM (Shintake monitor) Liquid Pb target Permanent FD Q Beam position stabilization (2nm) SC Final doublet Q/Sx Intra-train feedback (FONT) feed-forward DR->ATF2 ILC 2010, Mar/27/10 A. Seryi, BDS: 24 Beam Size monitor team: Feb

2010 Working with large beta*. Preparing hardware & tuning software for tuning down to smaller size. Next runs: April & May ILC 2010, Mar/27/10 A. Seryi, BDS: 25 ILC 2010, Mar/27/10 SC FD and Cryogenics meeting at BNL ATF2 ATF2 Option Option 22 (now (now the

the preferred preferred oo pp tt ii oo nn )) Face-to-face meeting at BNL was very productive; Will schedule a new meeting at KEK Update on SC Magnets and Schedule, Brett Parker, BNL-SMD 26 A. Seryi, BDS: 26 ILC 2010, Mar/27/10 ATF2 Coil Winding Status

Winding Schematic for ATF2 Quad Update on ATF2 SC Magnets Brett Parker, BNL-SMD All 3 coil sets now complete A. Seryi, BDS: 27 ILC QD0 R&D Prototype Long Coil Winding We did not adequately control the coil support tube position (even with orthogonal Challenges machine-controlled rolling

supports). Our first R&D coils had substantial harmonic errors. We have therefore decided to go back to using a few fixed, rigid supports and have made short coil winding modificationsmachine. (shown here) to the ATF2 We extended the machine &

carefully positioned fixed supports between the coils. The 2.2 m long QD0 R&D coil will be wound in two sections on a ILC SC FD & ATF2 SC Magnet Upgrade common ILC 2010, Mar/27/10 Update, Brett tube. Parker, BNL-SMD A. Seryi, BDS: 28 Beam Delivery & MDI items 1TeV CM, single IR, two detectors, push-pull grid: 100m*1m

Diagnostics IR Integration Optimize IR ensuring the needed detector performance & efficient push-pull operation Agree on division of responsibilities for space, parameters and devices Beam Switch Yard polarimeter Sacrificial

collimators Collimation: b, E E-spectrometer Tune-up & emergency Extraction Final Focus 14mr IR Tune-up dump Muon wall Main dump Final Doublet

ILC 2010, Mar/27/10 Extraction with downstream diagnostics A. Seryi, BDS: 29 ILC 2010, Mar/27/10 A. Seryi, BDS: 30 ILC 2010, Mar/27/10 A. Seryi, BDS: 31 ILC 2010, Mar/27/10 A. Seryi, BDS: 32 ILC 2010, Mar/27/10

A. Seryi, BDS: 33 From this. .to this Vibration studies for SiD Marco Oriunno, SLAC ILC 2010, Mar/27/10 Ground motion through the feet A. Seryi, BDS: 34 3 ILC 2010, Mar/27/10 A. Seryi, BDS: 35

ILC 2010, Mar/27/10 A. Seryi, BDS: 36 ILC 2010, Mar/27/10 A. Seryi, BDS: 37 ILC 2010, Mar/27/10 A. Seryi, BDS: 38 ILC 2010, Mar/27/10 A. Seryi, BDS: 39 ILC 2010, Mar/27/10

A. Seryi, BDS: 40 Beam 1 hits tungsten mask at IP-3 m 9 MW Sv/1_train ~ 100 /event ~ 1800 mSv/h The spaces between the door plates are empty in the model, but in the real detector they will be partially filled Radiation Protection studies for SiD Mario Santana, SLAC / RP

ILC 2010, Mar/27/10 MSL - SLAC 41 A. Seryi, BDS: 41 ILC 2010, Mar/27/10 A. Seryi, BDS: 42 ILC 2010, Mar/27/10 A. Seryi, BDS: 43 ILC 2010, Mar/27/10 A. Seryi, BDS: 44

ILC 2010, Mar/27/10 ILC Project general view John Osborne March 2010 A. Seryi, BDS: 45 ILC 2010, Mar/27/10 ILC RDR Baseline Layouts for Interaction Region A. Seryi, BDS: 46 ILC 2010, Mar/27/10 Possible new cross section

A. Seryi, BDS: 47 ILC 2010, Mar/27/10 A. Seryi, BDS: 48 Additional question: What sample (example) site will be included in TDP report? FNAL, CERN, Japan, Dubna? ILC 2010, Mar/27/10 A. Seryi, BDS: 49 Path forward IP parameter optimization Detailed work on SB2009 study Evaluate double rep rate at low

BDS & MDI coherent plan Enhance BDS-MDI work IR & Push-pull Stability Connection to CFS ATF2 work Beam size Stability Upgrades ILC 2010, Mar/27/10 1) Is this the correct strategy to achieve the goal of costconstraint ? Especially with E respect to your working group. 2) How should we improve

communication within the GDE and with key stakeholders (e.g. Physics and Detector groups)? 3) What are the top concerns you have for achieving the goals outlined in the R D Plan for the TDP through 2012? (see general program announcement). A. Seryi, BDS: 50

Recently Viewed Presentations

  • Year 11 Success Evening

    Year 11 Success Evening

    Section A: Modern text - Blood Brothers. Answer one essay question from a choice of two. 30 marks for content, 4 marks for quality of writing Section B - Poetry Anthology. One comparative question on one named poem printed on...
  • Federal Documents at UF - Center for Research Libraries

    Federal Documents at UF - Center for Research Libraries

    Federal Documents at UF. The University of Florida (UF) is the Regional Federal Depository Library for Florida, Puerto Rico and the U.S. Virgin Islands. It is also an active participant in the ASERL Collaborative Federal Depository Program with over 35...
  • Didattica speciale e dell&#x27;integrazione

    Didattica speciale e dell'integrazione

    Didattica dell'integrazione Salvatore Impellizzeri Associazione "Aquilante" L'allievo Lo spazio fisico Il setting Quale docente? Salvatore Impellizzeri Associazione "Aquilante" * * Aree generali di sviluppo da valutare Abilità cognitive: funzionamento intellettivo dell'alunno, esaminato attraverso il suo modo abituale di operare nelle...
  • Course Name - Kennesaw State University

    Course Name - Kennesaw State University

    Replace this system of forces by an equivalent resultant force and couple moment acting at point A. Replace the force and couple moment system by an equivalent force and couple moment acting at point P. Solution: -60cos30N -60sin30+ (-140)N -51.96N...
  • ENG 528: Language Change Research Seminar

    ENG 528: Language Change Research Seminar

    Format for Oral Presentations. Give them from the front of the class. You'll have a limit of 12 minutes total, including questions. Plan to talk for 9 minutes and allow 3 minutes for questions; I'll hold up cards showing time...
  • FAIR VALUE ACCOUNTING Grace A. Mullings, CPA Director,

    FAIR VALUE ACCOUNTING Grace A. Mullings, CPA Director,

    Provides a narrow scope exception tied only to the prepayment risk of the underlying prepayable financial assets If a securitized interest contains any other terms that affect some or all of the cash flows or the value of other exchanges...
  • Numerical Methods for ODEs

    Numerical Methods for ODEs

    We describe the system in terms of the position and velocity of the atoms that make up the system. Basic equations of motion . ... Hamiltonian system: ??=?? , ??=????, ??,?=???22??+? ...


    harbour. at any of the islands she always had him brought over. Son A. Legitimate. Land based. Marriage to daughter of land wealthy land dweller. Given a house in the city of Macau. ... Congressman Ron Paul . Presented Congress...