Introduction to Clinical Nutrition

Introduction to Clinical Nutrition

Introduction to Clinical Nutrition NFSC 370 D. Bellis McCafferty Illness Example : Cancer Altered Food Intake Examples: Loss of appetite,

altered food likes/dislikes, difficulty chewing and swallowing, reduced saliva secretion Altered Digestion and Absorption Examples: radiation enteritis, surgical resection of GI

tract, diarrhea Altered Metabolism Example: increased energy needs due to altered energy use in cancer Malnutriti on Altered

Nutrient Excretion Examples: fecal loss of fat-soluble vitamins and calcium in clients with cancers that affect enzyme secretion or bile salt production Clinical Nutrition (Medical Nutrition Therapy) Purpose

To achieve or maintain good nutritional status. American Dietetic Association Professional organization representing Registered Dietitians (RD) and Dietetic Technicians (DTR) Patient Care: Team Approach (Interdisciplinary)

Physician Registered Dietitian Registered Nurse, Licensed Vocational Nurse, Certified Nursing Assistant Pharmacist Speech Therapist Occupational Therapist Social Worker The Nutrition Care Process Identifying and meeting a persons nutrient and nutrition

education needs. Five steps: 1. Assess Assessment of nutritional status 2. Analyze Analyze assessment data to determine nutrient requirements 3. Develop Develop a nutrition care plan to meet patients nutrient and education needs. 4. Implement: Implement care plan 5. Evaluate: Evaluate effectiveness of care plan: ongoing followup, reassessment, and modification of care plan. THE PATIENT SHOULD BE AN ACTIVE PARTICIPANT IN THE CARE PROCESS!

Assessing Nutritional Status Historical Information Physical Examination Anthropometric Data Laboratory Analyses Historical Information Health History (medical history) - current and past health status diseases/ risk factors for disease appetite/food intake conditions affecting digestion, absorption, utilization, & excretion of nutrients emotional and mental health

Historical Information Drug History prescription & OTC meds illicit drugs nutrient supplements, HERBS and other alternative or homeopathic substances multiple meds (whos at risk?) Meds can alter intake, absorption, metabolism, etc. Foods can alter absorption, metabolism, & excretion of meds. Historical Information

Socioeconomic History - factors that affect ones ability to purchase, prepare, & store food, as well as factors that affect food choices themselves. Food availability (know local crops/produce) occupation/income/education level ethnicity/religious affiliations kitchen facilities transportation personal mobility (ability to ambulate) number of people in the household Historical Information Diet Historyanalyzing eating habits, food intake, lifestyle, so that you can set individualized, attainable

goals. Amount of food taken in Adequacy of intake omission of foods/food groups Frequency of eating out IV fluids

Appetite Restrictive/fad diets Variety of foods Supplements (overlaps) Historical Information Tools for taking a diet hx: 24 hour recall

Usual intake can find trends, such as breakfast/snacks Food Frequency Questionnaire/Checklist Food Records Observing food intake Analysis of Food Intake Data INDIVIDUAL NEEDS FOR NUTRIENTS VARIES Assessing Nutritional Status Historical Information Physical Examination Anthropometric Data Laboratory Analyses

Physical Examination: A picture is worth a thousand words. weight status mobility confusion signs of nutrient deficiencies/malnutrition esp. hair, skin, GI tract including mouth and tongue Fluid Balance (dehydration/fluid retention) Physical Examination: A picture is worth a thousand words. Limitations of Physical Findings Depends on assessor!

Many physical signs are nonspecific: ie. cracked lips from sun/windburn vs. from malnutrition, dehydration Assessing Nutritional Status Historical Information Physical Examination Anthropometric Data Laboratory Analyses Anthropometric Data - physical measurement of the body anthropos = human

metric = measure Indirect assessment of body composition and development Used in Nutrition Assessment: Measures using height and weight Measures of body composition (fat vs. lean tissue) Functional Measures Anthropometric Data Measures Using Height and Weight BMI Body Mass Index wt (kg) ht (cm)2

or wt (lb) X 705 ht (inches) 2 Anthropometric Data Measures Using Height and Weight 18.5-24.9 25+ 30+

Pros: many studies have identified the health risks associated with a wide range of BMIs easy to look up on chart screening tool Anthropometric Data Measures Using Height and Weight Cons: BMI can misclassify up to one out of four people. Does not account for fat distribution Doesnt account for LBM - may misclassify frail/sedentary or very muscular people

Met Life Insurance weight-for- height tables Weights based on lowest mortality Example: Height & Weight Table For Women Feet Inches SmallFrame MediumFrame LargeFrame 5' 1"

106-118 115-129 125-140 5' 2" 108-121 118-132 128-143

5' 3" 111-124 121-135 131-147 5' 4" 114-127 124-138

134-151 5' 5" 117-130 127-141 137-155 5' 6" 120-133

130-144 140-159 5' 7" 123-136 133-147 143-163 5' 8"

126-139 136-150 146-167 5' 9" 129-142 139-153 155-176

Weights at ages 25-59 based on lowest mortality. Weight in pounds according to frame (in indoor clothing weighing 3 lbs.; shoes with 1" heels) Anthropometric Data Measures Using Height and Weight Assessing Ideal Body Weight Hamwi Equation: Females: 100# for first 5 of height, plus 5# per inch over five feet Males: 106# for first 5 of height, plus 6# per inch over five feet +/- 10% to calculate a range (for those under 5 tall, subtract 2 lb. per inch

under 5) ** Amputations, immobility: 7 % Below elbow 3% Whole arm 6.5% 43

% Hand 1% Above knee 13% Below knee 6% Foot 1.8% Whol e leg 18.5 % Interpretation

%IBW Actual (present) weight IBW X 100 = %IBW example: 56 woman weighs 160#. What is her % IBW? 160 130 = 123% Interpreting % IBW 200% IBW = morbidly obese (or 100# over IBW) 120 % (130%) = obese 110 - 120 = overweight

90 - 109 = normal 80 - 89 = mildly compromised nutrition status (mild malnutrition) 70-79 = moderate < 70% = severe Anthropometric Data Measures Using Height and Weight Assessing Usual Body Weight Actual (present) weight X 100 = % UBW UBW example: 110# female lost 10# over past month 110/120 x 100 = 91.6% UBW, or loss of about 8%

Interpreting % UBW 85-90% mild 75-84% moderate <75% severe OR wt. change (unintentional weight loss) mild moderate severe 1 week 1-2%>2 1 month 5 >5 3 months 7.5 >7.5 6 months 10 10-15 >15

Anthropometric Data Measures of Body Composition (fat vs. lean tissue) Body Fat Measurements fatfold (skinfold) waist-to-hip ratios hydrodensitometry (hydrostatic weighing) bioelectrical impedance Anthropometric Data Measures of Body Composition Midarm muscle circumference indirectly measures protein status by estimating arm

muscle mass. Midarm circumference and triceps fatfold plug into an equation: mmc (cm) = mc (cm) - [.314 x triceps fatfold (mm)] Anthropometric Data Functional Measures of Nutrition Status Hand Grip Strength Dynamometer Not appropriate w/arthritis/muscular disorders Interpreting Measurements Requires caution

Interpreting Measurements Sometimes difficult to measure 2 mobility problems, injury, loose, hanging skin Hydration/dehydration affects weight, fatfolds, and MAMC Standards used are controversial Summing Up Anthropometric measures provide valuable information regarding body wt. and composition Do not reflect nutrition status alone Accuracy requires on the skill of the assessor

Caution interpreting results Assessing Nutritional Status Historical Information Physical Examination Anthropometric Data Laboratory Analyses Laboratory Analyses Help determine whats happening on the inside of the body Automated measurements of several blood components from a single blood sample

serum - plasma - Laboratory Analyses Interpreting Biochemical Tests Many can be skewed with fluid retention or dehydration. Over-hydration can cause _____ numbers Dehydration can cause ______ numbers These are clues that anthropometrics are probably skewed as well. Normal

hydration Overhydrated = diluted blood Dehydrated = concentrated blood 1 dl blood 10 mg/dl

5 mg/dl 20 mg/dl Laboratory Analyses: Biochemical Tests Of Protein Status Somatic proteins - physical work Serum/visceral proteins (circulating proteins & proteins found in the liver, kidneys, pancreas, and heart) maintain fluid balance synthesize enzymes and hormones

mount immune response heal wounds Therefore, protein status is an indicator of immune response. Laboratory Analyses: Biochemical Tests Of Protein Status Synthesized in the liver May reflect liver function Measurements skewed if liver diseased Remember, when kcals are inadequate, protein

is used to make glucose. Laboratory Analyses: Biochemical Tests Of Protein Status Serum Albumin: >50% total serum protein Helps maintain fluid and lyte balance Transports many nutrients, hormones, drugs, etc.

Used as indicator of protein status (visc. protein stores) Half life ___________ 3.5-5.0 = adequate 2.8-3.4 = mildly depleted 2.1- 2.7 = moderately depleted <2.1 = severely depleted visceral protein stores Laboratory Analyses: Biochemical Tests Of Protein Status Problems with albumin: not very sensitive, long half life levels reflect prolonged depletion, but

normal levels may not reflect short term changes in nutritional status. Levels : Remember, number affected by plasma volume, so in over-hydration and in dehydration. Laboratory Analyses: Biochemical Tests Of Protein Status Serum Transferrin = (TIBC x 0.76) + 18 Shorter half-life ____________ Transports iron:

If Fe deficiency present, doesnt accurately reflect protein status Transferrin levels RISE with Fe deficiency! Inverse relationship levels may indicate __________________ levels may indicate __________________ Laboratory Analyses: Biochemical Tests Of Protein Status Levels : Levels : Normal: Mild Moderate

Severe >200 mg/dl 150-200 mg/dl 100-149 mg/dl <100 mg/dl Laboratory Analyses: Biochemical Tests Of Protein Status Prealbumin (thyroxine-binding prealbuin or transthyretin TTHY) Being used more: some facilities using in place of albumin

Half life: ______________ Sensitive indicator of protein status Good indicator of pt. response to MNT $$ to run than albumin Laboratory Analyses: Biochemical Tests Of Protein Status Prealbumin Levels : Levels : Normal: Mild: Moderate:

Severe: 15-40 mg/dl 10-15 mg/dl 5-10 mg/dl <5 mg/dl Laboratory Analyses: Biochemical Tests Of Protein Status Nitrogen Balance Studies (usually only used in severe metabolic stress) 1. Track the patients UUN (Urinary Urea Nitrogen)

2. 24 hour record of protein intake 3. Plug into nitrogen balance equation: N balance (g) = protein intake - (UUN + 4) 6.25 Remember how this works? Amino Acids C-C-N C-C-N Urea (BUN)

N-C-N Excreted via kidneys (UUN) N balance (g) = protein intake - (UUN + 4) 6.25 4 represents non-urea N+ lost in feces, urine, skin, and respiration every 6.25 grams of protein contains 1 gram of nitrogen 0 or - =

+ = Goal for repletion : Laboratory Analyses: Biochemical Tests Of Immune Function Total WBCs Normal: 5,000-10,000/mm3 Possible critical values: <2500 or >30,000/mm3 High vs. low values?

Total Lymphocyte Count (TLC) Measured from % lymphocytes and total WBC count Equation: TLC = % lymphocytes X Total WBC/mm3 Normal: >1500 mm3 Mild: 1200 - 1500 Moderate: 800-1199 Severe: <800 What do unusually high numbers indicate? Laboratory Analyses: Hematological Assessment looking at blood cells and detecting anemias Hematology Assessment morphology & physiology

of blood cells. Helps detect the presence of anemias. Hemoglobin (Hgb, Hb) main functional constituent of the RBC, serving as the oxygen-carrying protein level may indicate depleted iron stores BUT 12-16 g/dl females 14-18 g/dl males Laboratory Analyses:

Hematological Assessment Hematocrit (Hct) % of RBCs in the total blood volume. Commonly used to diagnose Fe def., but also inconclusive values indicate incomplete Hgb formation, which is manifested by ____________, ______________ RBCs Males: 42%-52% Females: 37%-47% Laboratory Analyses: Hematological Assessment

Mean Corpuscular Volume (MCV) - the average volume (size) of a single RBC. levels: levels: normal: 80-953 Anemias: Normocytic, normochromic anemia: Iron def detected early (RBCs) Microcytic hypochromic: Fe-def detected late (or lead poisoning) Microcytic, normochromic:

Renal disease (2 loss of EPO) Macrocytic, normochromic: B12 or folate def (or chemo) Laboratory Analyses: Other Labs Used in Nutrition Assessment Glucose Indicates glucose tolerance/diabetes. Levels 2 _______________, pancreatitis, pancreatic CA, & with use of steroids (solumedrol and prednisone),caffeine, antidepressants and several other drugs.

Normal Fasting: Amino Acids C-C-N C-C-N Urea (BUN) N-C-N Excreted via kidneys (UUN)

Blood Urea Nitrogen (BUN) Major end product of protein metabolism Levels with impaired ____________ function Also with: Laboratory Analyses: Other Labs Used in Nutrition Assessment Creatinine (blood) Breakdown product of phosphocreatine, present in skeletal muscle Daily production of creatine, (and thus creatinine) depends on muscle mass

Creatinine is excreted in ________ on a daily basis. If _________ function is impaired, Creatinine levels will rise (decreased clearance). Laboratory Analyses: Other Labs Used in Nutrition Assessment Sodium (Na+) Indicator of hydration level. Look at Na+ level to evaluate other labs. Overhydration Dehydration - eg. albumin

Recently Viewed Presentations

  • World War II Posters

    World War II Posters

    With the growth of the Internet, the flow of persuasive messages has been dramatically accelerated. For the first time ever, citizens around the world are participating in uncensored conversations about their future.
  • Mandatory reporting:

    Mandatory reporting:

    Should immunity be restricted to reports in good faith, as in Canada, US & Australia, or absolute privilege as currently in English common law so that even malicious reports are protected? (Reports motivated by malice may be true…)
  • Strategic Planning in Public Health - University of Pittsburgh

    Strategic Planning in Public Health - University of Pittsburgh

    The Big Picture: Strategic Planning in Public Health TH Tulchinsky MD MPH Braun School of Public Health Hebrew University-Hadassah, Jerusalem Skopje, Macedonia 25 Oct 2010 Strategy and Tactics Strategy - A plan or method or series of maneuvers or stratagems...
  • FLUIDOS - WordPress.com

    FLUIDOS - WordPress.com

    Es igual en todas las direcciones y actúa mediante fuerzas perpendiculares a las paredes que lo contienen. El principio de Pascal fundamenta el funcionamiento de las genéricamente llamadas máquinas hidráulicas: la prensa, el gato, el freno, el ascensor y la...
  • Cancer of the Skin

    Cancer of the Skin

    Grade 1 tumors :more than 75% well-differentiated cells, grade 2 SCC, 50% to 75% of cells are described as well-differentiated. grade 3 SCC, 25% to 50% of cells are described this way. ... sentinel LN- WLE with margins of up...
  • PowerPoint 프레젠테이션

    PowerPoint 프레젠테이션

    80±2℃, 300시간 항온조에 유지 시킨 후 꺼내어 외관 조사 실시. 육안으로 보이는 비틀림, 변형, 변색, 균열, 잔금,박리, 경도의 변화나 끈적거림 등이 없어야 한다.
  • HACCP Training Guide

    HACCP Training Guide

    HACCP Study - PRINCIPLE 1Conduct a hazard analysis. Taking your confirmed process flow diagram your HACCP team will now need to conduct a Hazard Analysis for each step to identify the threats to human health, which might be introduced into...
  • CS145: Probability & Computing Lecture 15: Monte Carlo

    CS145: Probability & Computing Lecture 15: Monte Carlo

    The (Weak) Law of Large Numbers. sample mean orempirical mean . Chebyshev's inequality bounds distance between thetrue mean and the "empirical" or "sample" mean: The empirical mean converges to the true mean in probability. True even if variance not finite,...