ENGG 1015 Tutorial - University of Hong Kong

ENGG 1015 Tutorial - University of Hong Kong

ENGG 1203 Tutorial Electrical Circuit (II) and Project 1 Mar Learning Objectives News

Analyze circuits with resistors Illustrate stages and components used in the project Mid Term (TBD) Revision tutorial (TBD) Project Brief plan (8 Mar) Ack.: HKU ELEC1008 and MIT OCW 6.01 1 Quick Checking Assuming the voltage at node N0 = 0, compute the voltage at node N1 in each of these circuits. IR V/2 2

Quick Checking Assuming the voltage at node N0 = 0, compute the voltage at node N1 in each of these circuits. 3 IR 3 Analyzing Circuits

Assign node voltage variables to every node except ground (whose voltage is arbitrarily taken as zero) Assign component current variables to every component in the circuit Write one constructive relation for each component in terms of the component current variable and the component voltage Express KCL at each node except ground in terms of the component currents Solve the resulting equations Power = IV = I2R = V2/R 4 Question: Finding Resistances via Circuit Determine the indicated parameters for

Analysis each of the following circuits. Because the resistors are in series, the resistance between successive nodes will be proportional to the voltage between the nodes. R1 V V1 = 1R; R2 V V2 V1 = 1R; R3 V V3 V2 = 2R; R4 V V4 V3 = 4R; R5 V V5 V4 = 2R. 5 Question:

Another Example Determine the indicated parameters for each of the following circuits. KCL at the left-center node determines that a 1A current flows rightward through R2. To make V1 V2 = 2V, it follows that R2 = 2. KCL at the right-center node then determines that a 3A current flows downward through R1. To make 10V-V2 = 6V, it follows that R1 = 2. 6

Question: Another Example If VAB = 4V, determine R1, R2, R3 and R4. 7 Solution VAB = 4V If VB = -1.5V VA = 2.5V By potential divider,

R1:R2 = 1:1, R3:R4 = 1:1 R2 VA 5 2.5V R1 R2 R4 VB 3 1.5V R3 R4 You can pick any value for resistances. 8 Solution If VB = -1V VA = 3V

By potential divider, R1:R2 = 2:3, R3:R4 = 2:1 R2 VA 5 3V R1 R2 R4 VB 3 1V R3 R4 If VB = -2V VA = 2V By potential divider, R1:R2 = 3:2, R3:R4 = 1:2 9

Question: Resistance Calculation using Parallel/Series Combinations Find Req and io in the circuit of the figure. 10 Solution (i) 60 i0 12 5 6 40V

15 20 80 12 // 6 4 20 // 80 16 Req (ii) 60 i0 5 40V

4 15 16 4 16 20 Req 11 Solution (iii) i0 5 40V 15

20 60 Req Req 15 // 20 // 60 7.5 V IR 40 i0 7.5 5 i0 3.2 A 12 Question: Circuit Analysis with multiple sources Find vo in the circuit of the figure. 13 Solution

Step 1: Define the node voltage (v1,v2,v3) Step 2: Define the current direction 5A v2 v1 2 1 4 v3 8

+ v0 -- 40V 20V 14 Solution Apply: 1) V = IR 2) KCL Step 3: Consider node 1 v1 v2 40 v1 5 3v1 v2 70

2 1 1 5A 5A v2 v1 2 v1 (v1-v2)/2 (40-v1)/1 1

4 v3 8 + v0 -- 40V 20V 15 Solution Step 3: Consider node 2 v1 v2

v2 v2 v3 5 4v1 7v2 20 2 4 8 Step 4, 5: From (1) and (2), v1 = 30V, v2 = 20V, v0 = v2 = 20V 2 5A v2 v1 2

5A v2 (v22-v30)/8 (v )/8 (v1-v2)/2 1 4 v3 8 + v0 --

40V 20V (v1-0)/4 16 Rube Goldberg Machine Actuator to pop the balloon Input Output Input

Output Input Output Output (Tentative) At least five distinct stages with different triggering mechanisms The machine is started with pushing a button/switch, and is ended by popping a balloon. Input START button

17 Probing Questions for the Project Big questions How to design an (complicated) electrical system? How do you (as a team) build a multi-stage Rube Goldberg Machine that is functional and creative? Small questions

How do you describe the stages that are involved in the machine? How do you describe the electrical components in the machine? How do you demonstrate your skills of technical design and implementation? How do you demonstrate your ability to work effectively with diverse teams? How do you demonstrate your originality and inventiveness? 18 Brief Plan for the Project A brief plan for the project construction

No technical requirement A way to start thinking about the project A block diagram with illustrations Showing how the machine works after pressing the START button No fire/chemicals/heat/explosion/knife No water Use green beans Lego bricks are fine 19

Design a reliable and robust machine because of the Professors Negation Field 20 Systems that You Have Built in Lab Sessions Ball counting

Lab 1 Lab 4 The tunnel increments its internal counter every time a ball rolls through the tunnel. When three balls have rolled through the tunnel, it raises a digital DONE signal. Not necessarily to use straight tube 21 Systems that You Will Build in Lab Sessions Light tracking

Lab 5 Lab 7 The head can follow the direction of a light source Decide your own light source triggering mechanism Light 22 Sensors and Actuators in the Project Generation of sound Circuit isolation Generation of air flow Circuit isolation

Generation of rotation Generation of push force Contact switch Contact switch 23 Sensors and Actuators in the Project Sensing of rotation Non-contact switch

Non-contact switch Time counter START button LED 24 Mechanical Parts in the Project Metal ball

Stages triggering Metal pulley, sloted wheel eye hook, Wheeled castor Pulley, conveyor belt, sling 25 Mechanical Parts in the Project Aluminum cage (New Requirement) Plastic board Bracket

Hinge Cable tie and cable mount Weak fix joint between components 26 A Stage in the Rube Goldberg Machine Mechanical part

Electrical signal Actuator Mechanical signal from previous stage Buffer In a stage, an electrical sensor is triggered by an external mechanical input, the sensor then switches on the actuator(s) through buffers. Electrical actuator then moves mechanical parts, which finally trigger the electrical sensor in the next stage. Sensor

Mechanical signal for next stage 27 A Partial Stage in the Rube Goldberg Machine Sensor (Push) Actuator (Push) Sensor Buffer Actuator (Rotation) (Push)

28 A Partial Stage in the Rube Goldberg Machine Sensor Buffer (Non contact) Actuator Actuator (Fan) (Light) 29 A Partial Stage in the Rube Goldberg Machine Mechanical part

Actuator Buffer Ball counting circuit: A sensor only Light tracking circuit: Sensor + Buffer + Actuator (Not yet a complete stage) Sensor 30 Stages in the Rube Goldberg Machine

Actuator (Rotation) Buffer Sensor (Button) Mechanical Sensor Buffer Actuator parts (Rotation) (Fan) (Mechanical parts in the second stage are missed.) 31 (Appendix) Discussions about the thermistor in Lecture 5 pp. 52 55 that page

32 (Appendix) Question: Circuit Analysis R1 = 80, R2 = 10, R3 = 20, R4 = 90, R5 = 100 Battery: V1 = 12V, V2 = 24V, V3 = 36V Resistor: I1, I2, , I5 = ? 33 Solution a

VN = 0 I1: M R5 V1 R1 B I2: M V3 R3 R2 B I4: M V2 R4 B Step 1, Step 2 34

Solution b Lets try another reference ground VM = 0 I1: B R1 V1 R5 M I2: B R2 R3 V3 M

I4: B R4 V2 M 35 Solution b I1: B R1 V1 R5 M I2: B R2 R3 V3 M I4: B R4 V2 M Different direction, different result?

36 Solution b KCL of Node B: I1 + I2 + I4 = 0 VB VM = R1I1 V1 + R5I1 I1 = (VB VM + V1)/(R1 + R5) = (VB + 12)/180 37 Solution b

VB VM = R2I2 + R3I2 V3 I2 = (VB VM + V3)/(R2 + R3) = (VB + 36)/30 38 Solution b VB VM = R4I4 V2 I4 = (VB VM + V2)/R4 = (VB + 24)/90

39 Solution b KCL of Node B: I1 + I2 + I4 = 0 (VB + 12)/180 + (VB + 36)/30 + (VB + 24)/90 = 0 VB = 92/3 V 40 Solution b I1 = (VB + 12)/180 = 14/135 A = 0.104A

I2 = (VB + 36)/30 = 8/45 A = 0.178A I4 = (VB + 24)/90 = 2/27 A = 0.074A 41 42 43 44 45 (Appendix) Notes about

Multimeters Our multimeters allow you to measure current, voltage, and resistance. You connect the multimeter to a circuit using two leads. You can use The black lead should be plugged into the ground (common) jack. The red lead should be plugged into a jack labeled V--mA,. Because the meter probes are large, they can bridge, and thereby make unwanted electrical connections (short circuits) between adjacent pins of small components. Such short circuits can damage your circuit. To avoid this, you can measure the resistance or voltage across points in your breadboard by using short wires that are connected to the meter probes. 46 (Appendix) Notes about

Breadboard The breadboards have holes into which wires and components can be inserted. Holes in the long top row (labeled +) are connected internally (as are those in the second row, bottom row and next-tobottom row), as indicated by the horizontal (green) boxes (above). These rows are convenient for distributing power (+10 V) and ground. Each column of 5 holes in the center areas is connected internally, as indicated by two representative vertical (blue) boxes (above). Note that the columns of 5 are NOT connected across the central divide. 47 (Appendix) Notes about Wire and Resistors Wire

We have a lot of wire kits that contained wires of different lengths that are pre-cut and pre-stripped. Use these if you can. Try to select wires that are just the right length, so they can lie flat on the board. Messes of loopy wires are harder to debug and more likely to fall apart. If you need a longer wire, cut what you need from a spool. Use one of the pre-stripped wires for guidance on how much to strip: too little and it wont go deep enough into the breadboard; too much, and youll have a lot of bare wire showing, risking shorts against other wires and components. Resistors We use quarter-watt resistors, which means that they can dissipate as much as 250mWunder normal circumstances. Dissipating more than 250mW will cause the resistor to overheat

and destroy itself. 48 (Appendix) Notes about Potentiometer (or Pot) It is a three terminal device whose electrical properties depend on the angle of its mechanical shaft. The following figure shows a picture of the pot that we will use in lab (left), the electrical symbol used for a pot (center), and an equivalent circuit (right). The resistance between the bottom and middle terminals increases in proportion to the angle of the input shaft () and the resistance ) and the resistance between the middle and top terminal decreases, so that the sum of the top and bottom resistors is constant. We define a proportionality constant , which varies between 0 and 1 as the angle of the potentiometer shaft turns from 0 to its maximum angle , which is approximately 270 for the potentiometers that we use in lab.

49 By connecting a pot as a variable resistor (using top and middle terminals), the resistance across those terminals is proportional to the angle of the shaft. By connecting a pot as a voltage divider (top terminal to a voltage source and bottom terminal to ground), the voltage at the middle terminal is made proportional to the angle of the shaft. 50 (Appendix) Notes about Photoresistor A photoresistor is a two terminal device whose electrical resistance depends on the intensity of light incident on

its surface. A photoresistor is made from a high resistance material. Incident photons excite the electrons liberating them from the atoms to which they are normally held tightly so that the electrons can move freely through the material and thereby conduct current. The net effect can be characterized by plotting electrical resistance as a function of incident light intensity, as in the following plot (notice that the axes are logarithmically scaled). 51 Normal room lighting is between 10 and 100 lux. Illuminance near a 60 watt light bulb (as we will use in lab) can be greater than 10,000 lux. 52

Recently Viewed Presentations

  • era.library.ualberta.ca

    era.library.ualberta.ca

    What steps are necessary to "decolonize" institutional research and authorship policy and norms? How do we ensure we pay sufficient attention to the relationship and not just the research and its outcomes? Are there more accessible ways to present information...
  • 2015 International Energy Conservation Code - COAA

    2015 International Energy Conservation Code - COAA

    2015 International Energy Conservation Code. Overview and Compliance Requirements. Martha Shrader, LEED AP, BD+C. ... Equipment sizing, HVAC equipment performance requirements. C404 Service water heating equipment performance requirements. C405.2 Lighting controls. C405.3 Exit signs.
  • IB Agenda 8/26 - About

    IB Agenda 8/26 - About

    Kelly Tran. Anna Garrett &Kristine Bermudez. Gray Marshall. Courtney Gilbreath. Please fill out the rubric with the title of the book(s) you are addressing and give it to me before you present. ... IB Agenda 8/26 Last modified by: e125280...
  • Apresentação do PowerPoint

    Apresentação do PowerPoint

    professora Mónica Pereira eexposiçãode trabalhos dos alunos. ... Projeto Ler + Mar, Reconto da História "A Bruxa Mimi vai à praia - Professoras Júlia Brito, Paula Martins. Sala C13. 14 e 15 de . ... Maria João ...
  • Svjetlovodi - Fer

    Svjetlovodi - Fer

    ITU-T G.655 vlakno s pomaknutom non-zero disperzijom Mogu umanjiti nelinearna izobličenja tako da izbacuju nultu disperziju izvan trećeg optičkog prozora gušenje oko 0,2dB/km i polarizacijska disperzija 0,1ps/km. Konstrukcija kabela Primjer kabela Primjer kabela Konektori Zaključak avioindustrija, kabelska televizija, podmornice, internet...
  • Christian Estate Planning Your opportunity to assist those

    Christian Estate Planning Your opportunity to assist those

    For many estates, fundamentally you're either paying tax to Canada Revenue or instead, opting to give a gift to LCC ministries of your choosing. As faithful stewards of all the god has blessed you with, throughout your life you may...
  • Cat breeds - FFANow.org

    Cat breeds - FFANow.org

    The cat's tongue is long and flat, with almost parallel sides. It tapers slightly in front and somewhat more in the back of the mouth. The upper surface of the tongue is covered with rasplike papillae which enable the cat...
  • Slajd 1 - KDPW_CCP

    Slajd 1 - KDPW_CCP

    CCP12 Working Group 2 - Review of CPSS-IOSCO Standards and key recent regulatory publications . CCP12 Working Group 3 - Default Contact List and Information Sharing. 4 August 2012 - entry into force of new provisions of the Act on...