Disease Detectives (B,C)

Disease Detectives (B,C)

2020 DISEASE DETECTIVES (B,C) KAREN LANCOUR National Bio Rules Committee Chairman Event Rules 2020 DISCLAIMER This presentation was prepared using draft rules. There may be some changes in the final copy of the rules. The rules which will be in your Coaches Manual and Student Manuals will be the official rules. Event Rules 2020 BE SURE TO CHECK THE

2020 EVENT RULES FOR EVENT PARAMETERS AND TOPICS FOR EACH COMPETITION LEVEL Disease Detectives Part 1 Background & Surveillance Part 2 Outbreak Investigation Part 3 Patterns, Control & Prevention Event Rules 2020 Disease Detectives emphasizes the process of investigating health-related events When specific events are being analyzed,

competitors should not be expected to know facts such as latency or incubation periods or causative agents about diseases or conditions. These should be provided in background information or the body of the question. SOSI TRAINING MATERIALS Training Power Point content overview

3 Training Handout Parts 1,2 & 3 Practice Activities to help learn the process Sample Tournament sample problems with key Event Supervisor Guide prep tips, event needs, and scoring tips SO WEBSITE TRAINING MATERIALS EVENT RESOURCES the Science Olympiad website www.soinc.org under Event Information-will be posted throughout the fall Training Power Point content overview Internet Resource links to good resources for learning content Training Handouts overview, general principles Sample Tournament sample problems with key Event Supervisor Guide prep tips, event needs, and scoring tips Training CDs the Science Olympiad Store at www.soinc.org

Biology-Earth Science CD (BECD) current year topics for all bio events with training materials and extra resources Disease Detectives CD (DDCD) all content, extra resources, exams from from invitational, regional, state & national competitions Division B and Division C Test Packets national exams from the previous year On-line Text Books Principles of Epidemiology 3rd edition from CDC http://www.cdc.gov/osels/scientific_edu/SS1978/SS1978.pdf Epidemiology Basics published by the World Health Organization http://whqlibdoc.who.int/publications/2006/9241547073_eng. pd

f Game Plan 1. 2. 3. 4. 5. 6. 7. 8. Use the POWERPOINT for an overview Study the HANDOUTS for background information and content Use the INTERNET RESOURCES and CDS for more help see the Science Olympiad National website at www.soinc.org under event information and the

Science Olympiad store Prepare a RESOURCE BINDER and use OTHER TOOLS to LEARN THE CONTENT AND PROCESS SKILLS Prepare your ONE PAGE OF NOTES for effective use in competition Do PRACTICE ACTIVITIES to prepare for doing a competition Do the SAMPLE TOURNAMENT under timed conditions to experience being timed in competition. Prepare and do PRACTICE STATIONS, OLD TESTS, and INVITATIONALS to master knowledge, teamwork, and using your notes effectively under timed conditions. Event Makeup Format and material of the Division B and C event is similar except that the level of reasoning and math skills should be consistent with the grade level. Differences between the two

levels should be reflected in both the type of questions asked and the scoring rubrics. Types of skills needed Recognize risk factors for health problems Know the components of the scientific method used in investigating a disease outbreak to real-life situations affecting health Understand and interpret the basic concepts

of mathematics (rates & proportions as attack rate, relative risk & odds ratio) used to assess health risks Recognize an epidemiological case definition Know the different types of study designs used by epidemiologists and be able to PART ONE: BACKGROUND & SURVEILLENCE

Clinical Approach vs. Public Health Approach History of Epidemiology & Population Health Components of Public Health Epidemiology & Public Health Natural History & Spectrum of Disease Public Health Surveillance Clinical vs. Public Health Approaches Public Health Clinical Medicine Primary Focus

Populations Individuals Emphasis Prevention Diagnosis Health Promotion Treatment Whole Community Whole Patient Paradigm

Interventions aimed at Environment, Human Behavior and Lifestyle, and Medical Care Medical Care Organizational Lines of Specialization Analytical (Epidemiology); Organ (Cardiology); Setting and Population (Occupational Health); Patient Group (Pediatrics); Substantive Health Problem (Nutrition); Etiology, Pathophysiology (Oncology, Infectious Disease)

Skills in Assessment, Policy Development, and Assurance Technical Skill (Radiology) [Adapted from: Fineberg, Harvey, MD, PhD, Dean, Harvard University School of Public Health, 1990. Traditional Distinctions Between Public Health and Medicine. Table 5-1, Who Will Keep the Public Healthy? Educating Public Health Professionals for the 21st Century. Institute of Medicine, 2003. History of Public Health & Epidemiology John Gaunt analysis of mortality rates- 1662.

William Farr father of vital statistics & surveillance - 1800 John Snow father of field epidemiology cholera in London 1850s A Public Health Approach Surveillance Risk Factor Identification Intervention Evaluation Implementation

15 What Determines the Health of a Population? Genes and Biology Social/Societal Characteristics; Total Ecology Health Behaviors Medical Care Centers for Disease Control and Prevention. Social determinants of health. http://www.cdc.gov/socialdeterminants/FAQ.html. 16 Public Health Core

Sciences 17 Types of Public Health Issues

Alcohol-related harms Food safety Healthcare-associated infections Heart disease and stroke HIV Motor vehicle injury Nutrition, physical activity and obesity Prescription drug overdose Teen pregnancy Tobacco use EPIDEMIOLOGY

Scientific Method organized problem solving Distribution and determinants of disease in human populations Prevent and control those diseases Health-related events: chronic diseases environmental problems behavioral problems injuries infectious diseases Descriptive and Analytic Epidemiology

Descriptive epidemiology Analytic epidemiology When was the population affected? How was the population affected? Where was the population affected? Why was the population affected?

Who was affected? 20 Epidemiology Study Types Experimenta Epidemiolog y study types l Descriptive Observation al Analytic 21 KEY TERMS

o o o o o o Endemic disease or condition present among a population at all times Outbreak (localized epidemic) more cases of a particular disease than expected in a given area or among a specialized group of people over a particular period of time. Epidemic large numbers of people over a wide geographic area affected. Pandemic -An epidemic occurring over a very

wide area (several countries or continents) and usually affecting a large proportion of the population. Cluster an aggregation of cases over a particular period esp. cancer & birth defects closely grouped in time and space regardless of whether the number is more than the expected number. (often the expected number of cases is not known.) Sporadic a disease that occurs infrequently NATURAL HISTORY & SPECTRUM OF DISEASE Objectives of Surveillance The main objectives of surveillance are:

to provide information about new and changing trends in the health status of a population, e.g., morbidity, mortality, nutritional status or other indicators and environmental hazards, health practices and other factors that may affect health to provide feed-back which may be expected to modify the policy and the system itself and lead to redefinition of objectives provide timely warning of public health disasters so that interventions can be mobilized SURVEILLANCE PROCESS

Types of Surveillance Passive Surveillance diseases reported by health care professional as reporting case of measles Active Surveillance health agencies contact health providers seeking reports as searching for other cases of measles to identify potential outbreak Sentinel Surveillance involves only a limited network of carefully selected reporting sites targeting a particular disease

Syndromic Surveillance focuses on one or more symptoms to detect or anticipate outbreaks as influenza causing symptoms and absentee increases PART 2: OUTBREAK INVESTIGATION Steps in Solving Health Problems Step 1-Collect Data Surveillance, determine Time/Place/Person triad Step 2- Assessment- Inference Step 3- Hypothesis testing Determine how and why Step 4- Action-Intervention Note: Students will analyze an EPIDEMIOLOGICAL

STUDIES Scientific Method as related to Disease Detectives Obtain Background Information Define the Problem Formulate Hypothesis Develop a Study to Test the Hypothesis Collect Data and Observations Evaluate Results Determine if Hypothesis is true/modify Formulate Conclusions Report Results Compare these steps to 13 Steps in Outbreak Investigation Step 1: Prepare for Field

Work 1. Research, supplies & equipment research the disease or situation and gather needed supplies & equipment to conduct the investigation 2. Administrative arrangements make official administrative and personal travel arrangements 3. Local contacts - follow protocol Step 2: Establish the Existence of an Outbreak 1. Expected # of cases for area use records as health dept., hospital records, death records, physician records, doctor survey to determine expected # for the area in a given time

2. Other factors in play numbers may exceed normal due to factors such as better reporting, seasonal fluctuations, population changes Step 3: Verify the Diagnosis 1. Proper diagnosis - verify the procedures used to diagnose the problem and check methods used for identifying infectious and toxic chemical agents 2. Not lab error be sure that the increase number of cases are not due to experimental error 3. Commonality interview several persons who became ill to gain insight concerning possible cause, source, and spread of disease or problem

Step 4: Construct a Case Definition Case definition establish with the 4 components or standard criteria for determining who has the disease or condition a. Clinical information about the disease or condition b. Characteristics - of the affected people c. Location or place - as specific as possible as restaurant, county, or several specific areas d. Time sequence - specific time during which the outbreak or condition occurred Case Definition for Influenza-like (ILI)

A case of influenza-like illness (ILI) or influenza is defined as a person with fever of 37.8C (100F) or greater orally or 38.3C (101F) rectally PLUS cough during the influenza season (October 1 through May 31). A person with laboratory confirmed influenza is also considered a case even if the person does not have cough and fever. Identifying cases Identification of specific cases kind & number count specific cases Confirmed have diagnosis with case definition plus lab verification Probable many factors point to diagnosis but

may lack lab verification Possible some factors point to diagnosis Note: Initial reports may be only a small sampling of the total problem. Be sure to expand search to determine the true size and extent of the problem Line Listing Line Listing chart of specific cases including information about each case Identifying information - ID or case # - left column + name or initials Clinical information diagnosis, symptoms, lab results, hospital death? Descriptive: time date & time of onset + date of report Descriptive: person age, sex, occupation, other characteristics

Descriptive: place street, city or county + specific site Risk factors & possible causes specific to situation (disease) and outbreak setting Sample Line Listing Sample Line Listing from six case report forms on a wedding reception outbreak ID # 1 2 3 4 5 6 KR DM JG

RD NT AM Initials Date Diagnosis How of Onset Confirmed 7/23 probable trichinosis Not done 7/27 trichinosis Biopsy 33 8/14 probable trichinosis Not done 7/25 trichinosis Serologia 45

8/4 trichinosis Not done 27 8/11 R/Otrichinosis Pending 54 Age Sex County Physician Wedding 29 M 26

M F F M Columbia Goodman Columbia Baker Yes M Columbia Gibbs Yes King Webster Yes Columbia Stanley Yes Clayton Mason

Yes Yes Step 5: Find cases systematically and record information Identifying information Demographic information Clinical information Risk factor information Reporter information Types of Descriptive Studies Types of Descriptive Studies Study the distribution

of a problem by cases or outcome, frequency in population, exposure, time pattern or environmental factor (Studies without a control group can be used for descriptive purposes!) a. Case report/case series case report = detail report of a single patient from one or more doctors while case series = characteristics of several patients b. Correlative studies correlates general characteristics of the population with health problem frequency with several groups during the same period of time Time series analysis correlate within the same population a different point in time Ecologic relations correlate relative to specific ecologic factors as diet

Step 6: Describe in terms of Time, Place and Person Triad TIME a histogram showing the course of the disease or outbreak to identify the source of the exposure Epidemic Curve or Epi curve (Begin early & update often) PLACE geographic extent plus spot map of cases to identify groups specific to a location or environmental factors

PERSON identify the affected population by type of person or by exposures as age, sex, high risk exposure as with AIDS EPI Curve (Epidemic Curve) x axis= units of time equal to 1/4 to 1/3 incubation time and y axis = # of cases Note: a single point or source will have only one peak, a plateau will show a continuous common source, several uniform peaks will indicate a propagated outbreak spread from person to person Step 7: Develop Hypothesis (Agent/Host/Environment triad) 1. Agent /host /environment = agent capable of causing disease & its source host or persons susceptible to agent + environment allowing

them to get together Infectious Groups: viruses, bacteria, protistans (protozoa), fungi, animals (worms) 2. Testable hypothesis must be in a form that is testable 3. Current knowledge & background it should be based upon current knowledge and be updated or modified as new information is uncovered!!! Step 8: Evaluate Hypothesis (Analytical Studies = Control Group) 1. Compare with established fact these are used when evidence is strong and clear cut 2. Observational Studies: (Study determinants of health problems how & why)

Cohort Based upon exposure status whether or not they have outcome (illness) works forward from exposure Case-Control - Works backward from effect or illness to suspected cause. 3. Must have lab verification to validate hypothesis. Cohort Study Exposure Both groups have a known exposure and are checked for future outcomes or illness.

retrospective: (historic cohort) starts at exposure in past & moves forward to outcome prospective: starts a present exposure and moves forward in time to outcome Sample Cohort Study using 2 X 2 table 400 people attended a special awards dinner Some persons became ill. The suspected culprit was the potato salad. The population at the dinner was then surveyed to determine who became ill.

Disease Yes Exposed (Ate salad) Unexposed(no salad) Disease No 150 (a) 50 (c) 30 (b) 170 (d) Calculating Attack Rate & Relative Risk Disease Yes

Disease No Exposed (Ate salad) 150 (a) 30 (b) Unexposed (no salad) 50 (c) 170 (d) Attack rate the rate that a group experienced an outcome or illness= number sick total in that group (Look for high attack rate in exposed & low rate in unexposed) exposed = a (a+b) = 150 180 = 80% unexposed = c (c + d) = 50 220 = 20% Relative risk = [a (a+b)] / [c (c+d)] = 80% 20% = 4

Interpreting Results of Cohort Study Relative risk estimates the extent of the association between an exposure and a disease. It estimates the likelihood of developing the disease in the exposed group as compared to the unexposed group. A relative risk >1.0 indicates a positive association or an increased risk. This risk increases in strength as the magnitude of

the relative risk increases. A relative risk = 1.0 indicates that the incidence rates of disease in the exposed group is equal to the incidence rates in unexposed group. Therefore the data does not provide evidence for an association. Relative risk is not expressed in negative Case Control - Illness

Works backward from effect or illness to suspected cause. Control group is a selected group who has similar characteristics to the sick group but is not ill. They are then checked for similar exposures. It is often hard to select the control group for this type of study. Odds Ratio is calculated to evaluate the possible agents & vehicles of transmission Sample Case-Control Study Sample: Several patients were diagnosed with Hepatitis A.

The local Restaurant A was thought to be the source of the infection. 40 case patients and a similar disease free group or control were contacted to determine if they ate at Restaurant A. 2 X 2 table of data Ate Yes No Total Case patients Controls a = 30

b = 36 c = 10 d = 70 40 106 146 Total 66 80 Calculating Odds Ratio Ate Total Yes No Total

2 X 2 table of data: Case patients a = 30 c = 10 40 Controls b = 36 d = 70 106 66 80 146 Odds Ratio = Odds of exposure in cases =

5.8 Odds of exposure in controls a/c b/d = ad bc = 30x70 = 36x10 This means that people who ate at Restaurant A were 5.8 times more likely to develop hepatitis A than were people

who did not eat there. a = # of case patients exposed c = # of case patients unexposed b = # of control exposed d = # of control unexposed Potential Types of Error in Data Collection - Division C False Relationships Random Error - the divergence due to chance alone, of an observation on sample from the true population value, leading to lack of precision in measurement of association

Bias - systematic error in an epidemiologic study that results in an incorrect estimation of the association between exposure and health-related event Potential Types of Error in Data Collection Div. C Non-Causal Relationships Confounding occurs when the effects of two risk factors are mixed

in the occurrence of the healthrelated event under study - when an extraneous factor is related to both disease and exposure Step 9: As necessary, Reconsider, Refine, and Re-evaluate Hypotheses No confirmation of hypothesis - analytical studies do not confirm hypotheses. May need to look for a new vehicle or mode of transmission More specific May need to be more specific in make up of case patients & controls Bradford Hill criteria for Verifying the Cause of the Health Problem 1. Temporality cause/exposure must precede

effect/outcome 2. Consistency observation of association must be repeatable in different populations at different times 3. Coherence, 1-1 relationship exposure is always associated with outcome/ outcome is always caused by the specific exposure 4. Strength of association relationship is clear and risk estimate is high 5. Biological plausibility biological explanation makes sense 6. Dose/response (biologic gradient) increasing risk is associated with increasing exposure Step 10: Compare and Reconcile with laboratory an/or environmental studies Verify with environmental/laboratory studies

verification with control conditions is very important Laboratory evidence can confirm the findings LAB VERIFICATION IS NEEDED TO VALIDATE A HYPOTHESIS Environmental studies are equally important Examination of the area of an outbreak can provide evidence and clues used in laboratory analysis Step 11: Implement Control and Preventative Measures 1. As soon as source is known people are sick or hurting and need he must know agent & source of agent + susceptibility of host+

chain of transmission 2. Aim at chain of agent-source-host break the chain of transmission at any of its 3 points 3. May interrupt transmission or exposure with vehicles as isolation 4. May reduce susceptibility with immunization, legal issues and/or education Step 12: Initiate or Maintain Surveillance Once control and prevention measures have been implemented, they must continue

to be monitored If active surveillance was initiated as part of case finding efforts, it should be continued to determine whether the prevention and control measures are working Step 13: Communicate Findings 1. Oral briefing inform local health officials or other need-toknow groups as soon as information is available 2. Written report usually done in scientific format for future reference, legal issues, and education PART 3: PATTERNS, CONTROL &

PREVENTION Interpret Tables, Charts & Graphs Determine Measures of Disease Frequency-risk, rates, ratios, proportions Div. C Control Strategies Prevention Strategies Div. C National Challenges Interpreting Data

Tables Charts & Graphs Determining & Interpreting Measures of Frequency Epidemiological measures include: o counts absolute number of persons who have a disease or characteristic of interest o risk - The probability that an individual will be affected by, or die from, an illness or injury within a stated time or age span. o rate number of cases occurring during a specific period; always dependent on the size of the population during that period. o ratio value obtained by dividing one quantity by another a ratio often compares two rates. Number or rate of events, items, persons, etc. in one group Number or rate of events, items, persons, etc. in another group o proportion the comparison of a part to the whole as the number of cases divided by the total population does not have a time dimension, It can be expressed as a decimal, a fraction, or a percentage Number of persons or events with a particular characteristic

Total number of persons or events, of which the numerator is a subset X 10n Disease Control Concept of control: disease control describes ongoing operations aimed at reducing The incidence of disease The duration of disease and consequently the risk of transmission The effects of infection, including both

the physical and psychosocial complications The financial burden to the community Disease Control Process Preventable Causes of Disease BEINGS Biological factors and Behavioral Factors Environmental factors Immunologic factors Nutritional factors Genetic factors Services, Social factors, and Spiritual factors [JF Jekel, Epidemiology, Biostatistics, and Preventive Medicine, 1996] Natural history of disease Exposure

Onset of symptoms Usual time of diagnosis Pathologic changes Stage of Stage of susceptibility subclinical disease PRIMARY PREVENTION SECONDARY PREVENTION

Stage of clinical disease Stage of recovery, disability or death TERTIARY PREVENTION Strategy for Prevention Modify Existing Intervention Programs Evaluate

Intervention Programs Apply Population-Based Intervention Programs Identify Populations at High Disease Risk (based on demography / family history, host factors..) Assess Exposure

Conduct Research on Mechanisms (including the study of genetic susceptibility) PREVENTION APPROACHES Population-Based Approach: Preventive measure widely applied to an entire population (public health approach) Strive for small absolute change among many persons Must be relatively inexpensive and non-invasive

PREVENTION APPROACHES High-Risk Approach: Target group of individual at high risk Strive for strong risk factor control Often times requires clinical action to identify the high risk group and to motivate risk factor Monitoring The performance and analysis of routine measurements aimed at detecting changes in the environment or health status of population" (Thus

we have monitoring of air pollution, water quality, growth and nutritional status, etc). It also refers to ongoing measurement of performance of a health service or a health professional, or of the extent to which patients comply with or adhere to advice from health professionals.

Recently Viewed Presentations

  • Figurative Language

    Figurative Language

    Figurative language is the use of words that go beyond their ordinary meanings. Figurative language requires you to use your imagination to figure out the author's meaning. The water's reflection was like the sun on glass. the opposite of literal...
  • Curso de Extensão em Educação Especial na perspectiva da ...

    Curso de Extensão em Educação Especial na perspectiva da ...

    Curso de Extensão em Educação Especial na perspectiva da Educação Inclusiva: estratégias pedagógicas para favorecer a inclusão escolar TRABALHANDO TRANS- DISCIPLINARIAMENTE NO DIAGNÓSTICO E ATENDIMENTO EDUCACIONAL DE ALUNOS COM DEFICIÊNCIAS MÚLTIPLAS.
  • High School fall Trip to Washington, DC

    High School fall Trip to Washington, DC

    Medicines & Medical Consent. All medicines (prescription and non) must be labeled and given from parents to the designated chaperone with instructions on use.
  • Folie 1 - Deutsches Institut für Menschenrechte

    Folie 1 - Deutsches Institut für Menschenrechte

    Acting under Chapter VII of the Charter of the United Nations: (a) decides that UNAMID is authorised to take the necessary action, in the areas of deployment of its forces and as it deems within its capabilities in order to:...
  • Spring '13 - SportsEngine

    Spring '13 - SportsEngine

    Organized American sport is a drill-based culture. Soccer's greatest players grew up in cultures where free expression and creativity are inherent. Think Pick Up Soccer. Soccer is a Game of Mistakes. Over time, players learn from mistakes. Learning soccer is...
  • 1 Starting a Business

    1 Starting a Business

    1.4.2 The Marketing Mix. 1.4.2 The marketing mix. Marketing is all around us! What is your favourite confectionery product? Who makes it? Why do you choose it? When you get your hair cut how do you choose where? convenience. brand...
  • Read over the guidelines for Peer Editing (on Canvas). Look ...

    Read over the guidelines for Peer Editing (on Canvas). Look ...

    Example. Marriages in the time prior to the Regency Era were easy to conduct and did not require anything more than stated vows by the couple. Marriage was seen as the most holy of unions, it is still viewed that...
  • Walking School Bus and Its Sufficiency to Overcome Barriers ...

    Walking School Bus and Its Sufficiency to Overcome Barriers ...

    Walking School Bus potential "big bang" for virtually no "bucks"! Uses existing school personnel or volunteers. Simple strategy. Does not interfere with instruction time. Summary. Walking School Bus sufficient to overcome many barriers to active commute to school.