Clark Leonard Hull - History of computing

Clark Leonard Hull - History of computing

Clark Leonard Hull Hull Background Born 1884 in Akron NY Graduated U. of Michigan in 1913 Ph.D. U. of Wisconsin 1918 1929-1952 Professor of Psychology at Yale

Died 1952 Developed Hypothetico-Deductive System Clark Hull S ER = Reaction potential SHR = habit strength D = Drive

IR = reactive inhibition SIR = conditioned inhibition S OR = oscillation effect S LR = Threshold

StR = reaction time p = response probability n = trials to extinction A = response amplitute Clark Hull Postulate 1 & 2 Sensing the External Environment and the Stimulus Trace Stimulus Trace S-s-R

The Interaction of Sensory Impulses = Clark Hull S1 s1 S2 s2 S3

s3 S4 s4 S5 s5 s

r R Clark Hull Postulate 3 Unlearned Behavior - an need arises an the individual has a hierarchy of responses patterns to take care of this need. These response patterns are innate and if the first response pattern doesnt work then we go to the

second. Clark Hull Postulate 4 Contiguity and Drive Reduction as Necessary Conditions for Learning If a stimulus leads to a response and its satisfies a biological need (drive reduction) the S-R bond is strengthened. The more often leads to a need satisfaction the stronger the bond

(Habit Strength SHR) Habit Strength or SHR = 1 - 100.0305N Clark Hull Postulate 5 Stimulus Generalization - a stimulus will elicit a conditioned response depending on how similar the stimulus is to the stimulus that was used during training (stimulus generalization) SHR = generalized habit strength

- transfer of training Clark Hull Postulate 6 Stimuli Associated with Drives Primary motivation (D), at least that resulting from food deprivation, consists of multiplicative components: (1) the drive proper (D) which is an increasing monotonic sigmoid function of h, the number of hours of food deprivation; and (2) a negative or inanition component

() which is positively Clark Hull Postulate 6 accelerated montonic function of h decreasing from 1.0 to zero D = D x where D = 37.824 x 10-27.496*1/h+4.001 = 1 - .0000045h2.486 Clark Hull Postulate 6

300 250 200 150 100 50 0 Clark Hull Postulate 7 Reaction Potential as a Function of Drive and Habit Strength The likelihood of a learned response being made at any

given moment is called reaction potential (SER) SE R = SH R x D Clark Hull Postulate 8 Responding Causes Fatigue, Which Operates Against the Elicitation of a Conditioned Response Reactive inhibition (IR) reminiscence effect - stop studying prior to test

massed vs. distributed practice Clark Hull Postulate 9 The Learned Response of Not Responding - fatigue is a negative drive state. Conditioned Inhibition (SIR) Effective reaction potential = ER = SHR x D - (IR + SIR) Clark Hull Postulate 10

Factors Tending to Inhibit a Learned Response Change from Moment to Moment - there is an inhibitory potentiality which varies from moment to moment and operates against the elicitation of a response Oscillation effect (SOR) This is a wild card in Hulls theory Clark Hull Postulate 10

. Momentary Effective Reaction Formation = SER Momentary Effective Reaction Potential . SER = SHR x D - (IR + SIR) - SOR Clark Hull Postulate 11 Momentary Effective Reaction Potential Must Exceed a Certain Value Before a Learned Response Can Occur

. The value of SER must exceed the reaction threshold (SLR) Clark Hull Postulate 12 The Probability that a Learned Response Will Be Made Is a Combined Function of SER, SOR, and SLR In the beginning of training the momentary reaction potential will be close to the threshold therefore

the oscillation effect will play a role. As training goes on the oscillation effect will play less of a role. Clark Hull Postulate 13 & 14 The greater the Value of the Effective Momentary Reaction Potential the Shorter will be the Latency Between S and R Latency = (StR)

The value of the Effective Momentary Reaction Potential will Determine Resistance to Extinction Clark Hull Postulate 15 & 16 The Amplitude of a Conditioned Response Varies Directly with the Effective Momentary Reaction Potential When Two or More Incompatible Responses Tend

to Be Elicited in the Same Situation, the One with the Greatest Effective Momentary Reaction Potential will Occur Clark Hull Changes - 1952 Performance is altered as a result of the size of the reinforcement, therefore Hull included incentive as a factor (K) Crespi Effect - a rapid change in

performance as a result of a change in the size of the reinforcement Clark Hull stimulus-intensity Stimulus Intensity Dynamism the greater the intensity of a sitmlus, the greater the probability that a learned response will be elicited . ER = [ SHR x D x V x K- (IR + SIR)] - SOR

S Instead of drive reduction Hull decided that it should be drive stimulus reduction SD Actual Drive does not leave for a while Clark Hull rG Fractional Antedating Goal Response rG This is Hulls mental

component rG ) - this concept involves both operant and classical conditioning. A rat runs a T maze, no food is in the left wing and food is in the right wing. The rat will soon learn to go to the right Clark Hull rG Turning the corner (since it always comes just prior to the reinforcement of food) becomes

a secondary reinforcer. But, it also becomes a conditioned stimulus for salivation The corner therefore acts both as a conditioned stimulus and a secondary reinforcement. Clark Hull rG Since the corner is a cs salivation follows, but the salivation becomes a secondary

reinforcement as well since it is always followed by food. Likewise one could say that a variety of internal stimului (kinesthetic receptors) result in muscle twitches etc becoming secondary reinforcers, and keep the animal moving forward Clark Hull rG SD1 R1

SD2 R2 rG-sG SD3 R3 rG-sG R4

rG-sG Clark Hull Habit Family Hierarchy The habit family hierarchy simply refers to the fact that in any learning situation, any number of responses are possible and the one that is most likely is the one that brings about reinforcement most rapidly and with the least amount of effort.

If one way is blocked we try another Clark Hull Habit Family Hierarchy SD1 SD2 R1 rG-sG R2

R3 SD3 R1 R1 rG-sG R2 R3 rG-sG

R2 R3 Mowrer Mowrer went through a series of transitions in his theory. Two factor theory - worked with avoidance conditioning Animal learns to avoid a shock because a bell sounds and warns the animal of the shock. The anima must perform a behavior to

avoid the shock. Mowrer Sign learning - bell which tells animal to avoid the shock acts as a sign or warning. Thus Mowrer referred to it as sign learning Once the animal is warned of the shock it must perform a behavior to avoid the shock thus this is operant conditioning that Mowrer called solution learning

Mowrer Mowrer went on to note that many emotions can be explained with the two factor theory Decremental Learning is a stimulus that reduces a drive reduction like eating vs. Incremental Learning where a stimulus increases a drive like shock One can experience the emotion of hope if a bell sounds just prior to food or of disappointment if the bell sounds just prior to the removal of

food Mowrer Eventually Mowrer considered all learning sign learning. Mowrer felt that even proprioceptive stimuli come to give a sign of what to expect and there was not the need for solution learning. Kenneth Spence Spence believed in latent learning no reinforcement is necessary in

order to learn. Supported Aristotles law of contiguity Supported Aristotles law of frequency Incentive Motivation - Spence strongly believed in (K) Incentive Motivation K was the energizer of learned behavior Kenneth Spence

He believed that rG-sG Spence therefore had the momentary effective reaction potential equal to: (D + K) x SHR - IN Spence felt that an organism will make a response even if there is no reinforcement for doing so Kenneth Spence Extinction - frustration competition theory of extinction extinction does not occur because

of fatigue as Hull suggests but rather because frustration of not receiving a reinforcer competes with the reinforcer. Spence felt that we have a primary frustration when we do not receive reinforcement and like a fractional antedating goal response we build a fractional antedating frustration response. Abram Amsel Examined Spences idea that frustration causes extinction

Amsel and Roussel showed that animal increases responding before decreasing responding during extinction frustration effect Bower showed that the larger the reinforcer the faster the extinction, assumably from frustration. Abram Amsel Analyzed partial reinforcement effect - (extinction is slower

when organism is being reinforced with a partial reinforcement) Developed fractional antedating frustration response Neal Miller Visceral Conditioning and Biofeedback

Recently Viewed Presentations

  • Using Poetry in the English Classroom - Malekroky

    Using Poetry in the English Classroom - Malekroky

    The rest of the poem… 'Hope' is the thing with feathers—That perches in the soul—And sings the tune without the words—And never stops—at all—And sweetest—in the Gale—is heard—And sore must be the storm—That could abash the little BirdThat kept so...
  • If the Book Fits, Wear It!

    If the Book Fits, Wear It!

    and that you know most of the words Tigers are the largest wild cat in the world. They can weigh up to 720 pounds. I PICK a Good-Fit Book I choose a book Purpose Why do I want to read...
  • Childhood Disorders - Central Connecticut State University

    Childhood Disorders - Central Connecticut State University

    Arial Comic Sans MS Crayons Childhood Disorders Common Associated Diagnoses Behavioral Definitions Behavioral Definitions Behavioral Definitions History of Attachment Critical period for the development of attachment Mary Ainsworth's Research Model Infant Characteristics that promote attachment Infant & Mother characteristics that...
  • Hawaii Volcanoes National Park

    Hawaii Volcanoes National Park

    Ahupuaa(traditional land management area. Managed as both a State Forest Reserve in the mauka (mountainous) and State Park in the makai (coastal) lands. ... issued from a 7-km long discontinuous fissure system. It has the distinction of having the longest-lived...
  • Technological Impacts

    Technological Impacts

    Unit 3: Engineering Design Pass in your Technical Drawing Lab and your final Paper Mousetrap (someone else's that you constructed). If you are missing either assignment (or both), pass in a piece of paper with your name and missing assignment...
  • Redefining Developmental Math for Non-Algebra Core Math Courses

    Redefining Developmental Math for Non-Algebra Core Math Courses

    Subcommittee Members Chris Knight (Walters SCC) Co-chair John Kendall (SW TN) Co-chair Marva Lucas (MTSU) Helen Darcey (Cleveland SCC) Mary Monroe-Ellis (PSTCC) Sharon Lee (Wilson County Schools) Daryl Stephens (ETSU) MATH Survey The next few slides show a version of...
  • Update on Revision of DOE Order 456.1, The

    Update on Revision of DOE Order 456.1, The

    ISO/TR 13121 (2011), Nanotechnologies - Nanomaterial Risk Evaluation. ISO/TS 12901-1 (2012), Nanotechnologies - Occupational Risk Management Applied to Engineered Nanomaterials - Part 1: Principles and Approaches ... PowerPoint Presentation Last modified by: User
  • Pelatihan : Techniques in Active Tectonic Study Juni

    Pelatihan : Techniques in Active Tectonic Study Juni

    Local Relief at Various Scales. What are the relationships among these? Which are most useful for gaging the influence of tectonics on topography?--K. X Whipple. 80-90% Relief is on Bedrock Channels. Blue lines: drainage area > 1km2--K. X Whipple.