Cellular Neuroscience (207) Ian Parker

Cellular Neuroscience (207) Ian Parker

Cellular Neuroscience (207) Ian Parker Lecture # 4 - The HodgkinHuxley Axon http://parkerlab.bio.uci.edu The Action Potential An electrical depolarization that propagates rapidly (up to 10s of m per sec) along nerve axons record stimulate + 50 mV overshoot 0 mV Rising phase depolarization Falling phase repolarization

- 70 mV hyperpolarization Afterpotential (undershoot) Stimulus artifact Conduction delay Basic mechanisms of the action potential The action potential is a brief time when the membrane potential is flipped positive rather than negative inside. This arises because the cell membrane becomes transiently permeable to Na+ ions, which rush into the cell down their concentration gradient, depolarizing it toward E Na. RISING PHASE 1. Depolarization (e.g. excitatory synaptic input) opens voltagedependent Na channels. 2. Na+ ions enter cell causing

FALLING PHASE 1. Na channels inactivate, so depolarizing, inward Na+ current stops. 2. Voltage-gated K channels open 3. Efflux of K+ ions down their electrochemical gradient repolarizes the cell toward E k 4. Repolarization causes K channels to shut, but slow gating may cause undershoot below normal resting potential.

3. Depolarization Some properties of the action potential 1. Action potentials are all-or-none events. Once a stimulus exceeds threshold (ca. -45 mV) an action potential is triggered. Size of the action potential (peak ~ + 50 mV) is fixed, and does not depend on stimulus strength. 2. Action potentials propagate without decrement at a finite speed. Speed is fast by biological standards (several m per sec vs. um per sec for chemical; signals), but much (million-fold) slower than an electrical signal along a wire. 3. Refractory period. After one action potential there is a short time (ms) when an axon cannot be stimulated to give another action potential. Primarily due to the time for Na channels to recover from inactivation. This is important because it; a. Stops action potentials from traveling backwards b. Sets a limit to the maximum frequency of action potentials an axon can transmit.

Hodgkin - Huxley analysis of the action potential (early 1950s) Voltage-clamp Technique that allows the voltage across an axon membrane to be held at any desired level, while measuring the resulting current flow across the membrane. Used with giant (1 mm diameter) squid axon, that allows easy insertion of intracellular electrodes. Feedback circuit compares the actual membrane potential with the desired command voltage. Any difference (error) is amplified and inverted, and fed back into the axon as a current to bring the potential to the desired level (like cruise control on a car). Current flowing from the circuit thus gives a direct measure of current flowing acros the axon membrane. Currents flowing across a squid axon in response to voltage steps Depolarization to voltages more positive than about -25 mV evokes a complex series of

currents. A transient current usually inward-, followed by a slower developing , maintained outward current. The initial transient current at first becomes larger (more inward current) with increasing depolarization, then reduces to zero at ~ +60 mV, and inverts to become outward at yet more positive voltages. The slower current is always outward, and becomes increasingly large at more positive potentials. Depolarization to -35 mV evokes only passive responses Hyperpolarization evokes only passive, leakage currents Resting potential depolarize or hyperpolarize How to make sense of this pharmacologically dissect the transient and maintained currents into their ionic

components Total currents evoked by a range of depolarizing stimuli Blocking Na channels with tetrodotoxin abolishes the initial transient current, leaving only the slower, maintained outward K current. Blocking K channels with TEA abolishes the slow outward current, leaving just the fast, inward Na currrent Current/voltage relationships for the initial and maintained current components Current amplitudes measured at their peaks The delayed, outward current increases progressively at increasingly positive voltages

Both currents begin to activate at about -35 mV. The initial transient current increases with voltages up to about +20 mV, then declines to zero at about +50 - +60 mV, and becomes outward at voltages > +60 mV Currents through Na and K channels reflect both the Ohmic dependence of current flow through single channels, and the voltage-dependence of channel open probability We can separate these two effects by calculating whole-cell conductance as a function of voltage e.g. for transient Na current IM ENa = +50 mV 0 mV VM Ichannel

Current across the axon membrane is the product of the single-channel Na current and the number of Na channels open at a given voltage. We can estimate the latter by calculating Na conductance; Sigmoid relationship reflecting voltage-dependent activation of Na channels g Na gNa = IM/VM-ENa VM VM -50 mV 0

+50 mV The conductance/voltage relationship for K channels looks very similar, except that the initial turn-on is a little less steep Equivalent circuit diagram for an axon membrane The Na and K channels can be thought of as variable resistors, whose values depend on voltage, and which determine the importance of their respective batteries (Na and K equilibrium potentials) in setting the final voltage across the cell membrane. Changing the membrane potential involves charging the membrane capacitance, so the voltage changes during an action potential depend on the time course (kinetics) of the Na and K conductance changes as well as their peak values. So, what are the kinetics of gNa and gK? 0 mV VM -60 mV gNa

gK During depolarization, gNa shows both time-dependent activation and inactivation. gK shows only activation. During the falling phase of an action potential, gK declines because the membrane potential repolarizes, NOT because K channels inactivate The kinetics of Na channel activation and inactivation, and the kinetics of K channel activation all become faster at more positive potentials - 20 mV +20 mV gNa gK Time course of K channel activation and closing VM Sigmoid rise Exponential decay gK H-H expained the openinng of a K channel as being controlled by movement of

several independent particles (voltage sensors). The channel is open only if all are in the ON position. Suppose 4 particles, each with probability n of being in the ON position. Probability of channel opening is then given by n 4 Further suppose that probability n changes exponentially with time following a voltage step VM n gK (varies as n ) 4 gK (varies as n) More about gating particles The K channel molecule has 4 charged particles that move according to the voltage across the membrane. [In the 1950s these particles were merely postulates we now know they correspond to the S4 regions of the channel molecule] Out + + + + + + + + + +

- - - - - - - - - - - - + OFF position In + + + + - - - - - - - - - - - - - + + + ON position

+ + + + + + + + + + n varies with voltage and with time. H-H characterized it by two parameters; ninfinity probability of being in the ON state after holding at a given voltage for a very long time n the rate at which n changes following a step to a new voltage. From their experimental data H-H could derive empirical values for these parameters. What about Na channels? H-H described Na channel activation in the same way as for K channels, by movement of gating particles. For the Na channel, these are referred to as m (not n), and movement of only 3 (not 4) was required to give the best fit to the data. Also, another gating particle (h only one per channel) was introduced to account for the inactivation of the Na channel

The Hodgkin Huxley Equation Ionic currents across the axon membrane can be described in terms of three components; IM = m3hgNa(E-ENa) + n4gK(E-EK) +gL(E-EL) Na current K current leak current [Dont worry; you wont be asked to remember this in an exam! ] All of the electrical excitability of the membrane is embodied in the timeand voltage-dependence of n, m and h. The model accurately predicts observed action potentials in many species, and is one of the few cases where we can reduce biology to an equation. But, like any other model it cannot prove the existence of underlying mechanisms.

Recently Viewed Presentations

  • The Global Community - FIU

    The Global Community - FIU

    1-Case 7-1 Chippy Potato Chip Company #5: You work for the motor carrier classification bureau and notice that the relationship between the weight of potato chips and the weight of packaging has changed.
  • The Book of Zephaniah - University of Missouri-St. Louis

    The Book of Zephaniah - University of Missouri-St. Louis

    * The Age of the Church Fathers Patristic Period (AD 95 - 636) Great Eastern Church Fathers St. Athanasius (297-373) Council of Nicaea (425) Bishop of Alexandria -- Exiled and deposed five times for fighting against Arianism Friend of St....
  • The fire started on Sunday 2nd September 1666,

    The fire started on Sunday 2nd September 1666,

    Thomas Farynor, the baker, forgot to put out the fire in an oven when he left the bakery on the Saturday evening. Early in the morning of Sunday 2nd September 1666, Thomas and his family were woken by one of...
  • Preferred Font is Memphis Bold

    Preferred Font is Memphis Bold

    ShopKey information is critical and a necessity at the fingertips of every technician. At the dash, under the hood under the car or even in the trunk. Ask-a-Tech creates an access point to communicate and access others experience when you...
  • FEUDALISM & MANORALIS M Der Bamberger Reiter, 1237

    FEUDALISM & MANORALIS M Der Bamberger Reiter, 1237

    Setting. 476 A.D. Fall of the Roman Empire. widespread chaos decentralized government. (weak kings left nobles to fend for themselves) way for nobles to control large areas without support of a central government
  • Safety Management System - Pennsylvania Department of Labor ...

    Safety Management System - Pennsylvania Department of Labor ...

    Safety Management System. A Safety Management System is: A pro-active, risk based approach to managing safetythroughout an organization. An SMS provides a systematic way to identify hazards and control risks while maintaining assurance that these risk controls are effective. Click...
  • Diapositive 1 - Lycée Henri Sellier

    Diapositive 1 - Lycée Henri Sellier

    Vous le trouverez à la cote : F CHI Daniel Keyes Les mille et une vies de Billy Milligan Quand la police de l'Ohio arrête l'auteur présumé de trois, voire quatre, viols de jeunes femmes, elle pense que l'affaire est...
  • Literacy Test Workshop Dr Yoshi Budd Dr Linda

    Literacy Test Workshop Dr Yoshi Budd Dr Linda

    2017 Registration Dates. Registrations now open (until 2 May) for the May/June test window (24 May to 6 June) Open to all pre-service teachers. If you are due to complete your course this year you are encouraged to sit the...