A Brief History of Planetary Science

A Brief History of Planetary Science

Internal Energy Physics 202 Professor Lee Carkner Lecture 16 Consider two rooms of a house, room A and room B. If the (otherwise identical) molecules in room B have twice as much average kinetic energy than the ones in A, how does the temperature of room A compare to the temperature of

room B? A) B) C) D) E) T A = TB TA = 2 T B TA = TB TA = 2 TB TA = (3/2) TB

How does the rms velocity of the molecules in room A compare to the rms velocity of the molecules in room B? A) B) C) D) E) vA = vB vA = 2 v B

v A = vB vA = 2 vB vA = (1/2) vB PAL #15 Kinetic Theory Which process is isothermal? Start with p =4 and V = 5 Since T is constant, nRT is constant and thus pV is constant

Initial pV = 20, A: pV = 20, B: pV = 21 A is isothermal 3 moles at 2 m3, expand isothermally from 3500 Pa to 2000 Pa For isothermal process: W = nRTln(Vf/Vi)

Need T, Vf pV = nRT, T = pV/nR = (3500)(2)/(3)(8.31) = 281 K Vf = nRT/pf = (3)(8.31)(281)/(2000) = 3.5 m3 W = (3)(8.31)(281)ln (3.5/2) = 3917 J Since T is constant, E = 0, Q = W = 3917 J Ideal Gas We will approximate most gases as ideal gases which can be represented by: vrms = (3RT/M) nRT

W dV V Vf Vi Internal Energy We have looked at the work of an ideal gas, what about the internal energy? Eint = (nNA) Kave = nNA(3/2)kT Eint = (3/2) nRT

Internal energy depends only on temperature Since monatomic gasses can only have energy of motion Molar Specific Heats How does heat affect an ideal gas? The equation for specific heat is: From the first law of thermodynamics:

Consider a gas with constant V (W=0), But Eint/T = (3/2)nR, so: CV = 3/2 R = 12.5 J/mol K Molar specific heat at constant volume Specific Heat and Internal Energy Eint = (3/2)nRT Eint = nCVT Eint = nCV T

True for any process (assuming monatomic gas) Specific Heat at Constant Pressure We can also find the specific heat at constant pressure: Eint = nCVT W = pV = nR T Solving for Cp we find: Cp = CV + R For a constant pressure or constant volume situation (assuming

a monatomic ideal gas) we can find how much heat is required to produce any temperature change Degrees of Freedom Our relation CV = (3/2)R = 12.5 agrees with experiment only for monatomic gases We assumed that energy is stored only in translational motion For polyatomic gasses energy can also be

stored in modes of rotational motion Each possible way the molecule can store energy is called a degree of freedom Rotational Motions Monatomic No Rotation Polyatomic 2 Rotational Degrees of Freedom

Equipartition of Energy Equipartition of Energy: We can now write CV as CV = (f/2) R = 4.16f J/mol K Where f = 3 for monatomic gasses (x,y and z translational motion and f=5 for diatomic gases (3 trans. + 2 rotation) Oscillation

The atoms oscillate back and forth as if the bonds were springs So there are 3 types of microscopic motion a molecule can experience: translational - rotational - oscillatory -- If the gas gets too hot the molecules will disassociate Internal Energy of H2

Adiabatic Expansion It can be shown that the pressure and temperature are related by: pV = constant You can also write: TV-1 = constant Ideal Gas Processes I Isothermal

Constant temperature Q=W W = nRTln(Vf/Vi) Isobaric Constant pressure Q=nCp T W=pV Ideal Gas Processes II Adiabatic

No heat (pV = constant, TV-1 = constant) Q= 0 W=-Eint Isochoric Constant volume Q= nCVT W=0 Idea Gas Processes III

For each type of process you should know: Path on p-V diagram What is constant Specific expressions for W, Q and E

Next Time Read: 21.1-21.4 Homework: Ch 19, P: 44, 46, 53, Ch 20, P: 2, 4 Note: Test 2 next Friday, Feb 1

Recently Viewed Presentations

  • Craig A. Anderson, Ph.D. Professor of Psychology & Chair ...

    Craig A. Anderson, Ph.D. Professor of Psychology & Chair ...

    7±2 Deadly Sins in Media Violence Research. Craig A. Anderson, Distinguished Professor. Digital Media & Developing Minds Congress. Cold Spring Harbor Laboratory, Oct. 15-18, 2018
  • 1- Vrai ou faux? Lalcool augmente le rythme

    1- Vrai ou faux? Lalcool augmente le rythme

    Réponse 24 La méthamphétamine se présente généralement sous forme de comprimés (speed), de capsules, de poudre ou bien de cristaux (crystal meth).
  • Contracts, Procurement, & Risk Management

    Contracts, Procurement, & Risk Management

    OfficeMax 2012 Catalog. CSU Recycled Item List . 483 Core Recycled Items - Supported by Online Shopping Lists. Environmentally Preferable Products (EPP) New Category . Catalog~3950 Items - supported by Online Catalog Search.
  • Chapter 1: Fundamental Concepts - personal.tcu.edu

    Chapter 1: Fundamental Concepts - personal.tcu.edu

    Sample Questions Calculate the wavelength of an FM radiowave at 100.2 MHz. The energy required to ionize sodium is 496 kJ/mol. What is the minimum frequency of light required to ionize sodium? ... Magnetic Quantum Number -- ml related to...
  • Representing Functions

    Representing Functions

    Graphs of Arithmetic Sequences. What do you notice about the graph of this arithmetic sequence? What did you notice about all the arithmetic sequences from the graphing activity? It appears that arithmetic sequences form linear functions. Can we prove this...
  • Social Sciences and Humanities Grades 9 to 12

    Social Sciences and Humanities Grades 9 to 12

    OHASSTA/OHHSSCA. OPTA. Resources in Development. Research and Inquiry Process Posters. In your . subdiscipline. teams: Review the Research and Inquiry Process posters. Discuss: How might these posters. be used to support the learning of. all students in your subdiscipline.
  • Ontologies: What are they? and How do they

    Ontologies: What are they? and How do they

    Merging and building ontologies If you confront 2 databases each with its own ontology, you MIGHT be able to map one to the other if you want to combine them or query both using the ontology of just 1. ......
  • Extraction de connaissances provenant de données multisources ...

    Extraction de connaissances provenant de données multisources ...

    Extraction de connaissances provenant de données multisources pour la caractérisation d'arythmies cardiaques Élisa Fromont, Marie-Odile Cordier et René Quiniou