Transcription

September 14, 2012A01 CHIN3219 03 SE FMpage iWATER-RESOURCES ENGINEERINGThird EditionDavid A. Chin 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012A01 CHIN3219 03 SE FMpage iiLibrary of Congress Cataloging-in-Publication DataChin, David A.Water-resources engineering / David A. Chin. – 3rd ed.p. cm.ISBN-13: 978-0-13-283321-9 (alk. paper)ISBN-10: 0-13-283321-2 (alk. paper)1. Hydraulics. 2. Hydrology. 3. Waterworks. 4. Water resourcesdevelopment. I. Title.TC160.C52 2014627–dc232012018911Vice President and Editorial Director, ECS: Marcia J. HortonExecutive Editor: Holly StarkEditorial Assistant: Carlin HeinleExecutive Marketing Manager: Tim GalliganMarketing Assistant: Jon BryantPermissions Project Manager: Karen SanatarSenior Managing Editor: Scott DisannoProduction Project Manager / Editorial Production Manager: Greg DullesCover Photo: United States Bureau of Reclamation 2013, 2010, 2006, 2000 Pearson Education, Inc.Upper Saddle River, New Jersey 07458All rights reserved. No part of this book may be reproduced in any form or by any means, withoutpermission in writing from the publisher.Pearson Prentice Hall is a trademark of Pearson Education, Inc.The author and publisher of this book have used their best efforts in preparing this book. These efforts include thedevelopment, research, and testing of the theories and programs to determine their effectiveness. The author andpublisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentationcontained in this book. The author and publisher shall not be liable in any event for incidental or consequentialdamages in connection with, or arising out of, the furnishing, performance, or use of these programs.Printed in the United States of America.10 9 8 7 6 5 4 3 2 1ISBN: 0-13-283321-2Pearson Education Ltd., LondonPearson Education Australia Pty. Ltd., SydneyPearson Education Singapore, Pte. Ltd.Pearson Education North Asia Ltd., Hong KongPearson Education Canada, Inc., TorontoPearson Educación de Mexico, S.A. de C.V.Pearson Education—Japan, TokyoPearson Education Malaysia, Pte. Ltd.Pearson Education, Upper Saddle River, New Jersey 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012A01 CHIN3219 03 SE FMpage iiiTo Andrew and Stephanie.“But those who hope in the Lord will renew their strength. They will soar onwings like eagles; they will run and not grow weary, they will walk and not befaint.”Isaiah 40:31 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012A01 CHIN3219 03 SE FMpage iv 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012A01 CHIN3219 03 SE FMpage vContentsPreface1xvIntroduction1.1 Water-Resources Engineering . . . . . . . . . . . . . . . .1.2 The Hydrologic Cycle . . . . . . . . . . . . . . . . . . . . .1.3 Design of Water-Resource Systems . . . . . . . . . . . . .1.3.1 Water-Control Systems . . . . . . . . . . . . . . . .1.3.2 Water-Use Systems . . . . . . . . . . . . . . . . . .1.3.3 Supporting Federal Agencies in the United StatesProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Fundamentals of Flow in Closed Conduits2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .2.2 Single Pipelines . . . . . . . . . . . . . . . . . . . . . .2.2.1 Steady-State Continuity Equation . . . . . . . .2.2.2 Steady-State Momentum Equation . . . . . . .2.2.3 Steady-State Energy Equation . . . . . . . . . .2.2.3.1 Energy and hydraulic grade lines . . .2.2.3.2 Velocity profile . . . . . . . . . . . . .2.2.3.3 Head losses in transitions and fittings2.2.3.4 Head losses in noncircular conduits .2.2.3.5 Empirical friction-loss formulae . . .2.2.4 Water Hammer . . . . . . . . . . . . . . . . . .2.3 Pipe Networks . . . . . . . . . . . . . . . . . . . . . . .2.3.1 Nodal Method . . . . . . . . . . . . . . . . . . .2.3.2 Loop Method . . . . . . . . . . . . . . . . . . .2.3.3 Application of Computer Programs . . . . . . .2.4 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.4.1 Affinity Laws . . . . . . . . . . . . . . . . . . .2.4.2 Pump Selection . . . . . . . . . . . . . . . . . .2.4.2.1 Commercially available pumps . . . .2.4.2.2 System characteristics . . . . . . . . .2.4.2.3 Limits on pump location . . . . . . . .2.4.3 Multiple-Pump Systems . . . . . . . . . . . . .2.4.4 Variable-Speed Pumps . . . . . . . . . . . . . .Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Design of Water-Distribution Systems3.1 Introduction . . . . . . . . . . . . . . . . . . . . .3.2 Water Demand . . . . . . . . . . . . . . . . . . . .3.2.1 Per-Capita Forecast Model . . . . . . . . .3.2.1.1 Estimation of per-capita demand3.2.1.2 Estimation of population . . . .3.2.2 Temporal Variations in Water Demand . .3.2.3 Fire Demand . . . . . . . . . . . . . . . .3.2.4 Design Flows . . . . . . . . . . . . . . . .3.3 Components of Water-Distribution Systems . . .3.3.1 Pipelines . . . . . . . . . . . . . . . . . . .3.3.1.1 Minimum size . . . . . . . . . . .3.3.1.2 Service lines . . . . . . . . . . .3.3.1.3 Pipe materials . . . . . . . . . 586062.7070707171727677798181828383 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reservedv

September 14, 2012viA01 CHIN3219 03 SE FMpage viContents3.3.2 Pumps . . . . . . . . . . . . . . . . . . . . . .3.3.3 Valves . . . . . . . . . . . . . . . . . . . . . .3.3.4 Meters . . . . . . . . . . . . . . . . . . . . . .3.3.5 Fire Hydrants . . . . . . . . . . . . . . . . . .3.3.6 Water-Storage Reservoirs . . . . . . . . . . .3.4 Performance Criteria for Water-Distribution Systems3.4.1 Service Pressures . . . . . . . . . . . . . . . .3.4.2 Allowable Velocities . . . . . . . . . . . . . .3.4.3 Water Quality . . . . . . . . . . . . . . . . . .3.4.4 Network Analysis . . . . . . . . . . . . . . . .3.5 Building Water-Supply Systems . . . . . . . . . . . .3.5.1 Specification of Design Flows . . . . . . . . .3.5.2 Specification of Minimum Pressures . . . . .3.5.3 Determination of Pipe Diameters . . . . . . .Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Fundamentals of Flow in Open Channels4.1 Introduction . . . . . . . . . . . . . . . . . . .4.2 Basic Principles . . . . . . . . . . . . . . . . .4.2.1 Steady-State Continuity Equation . . .4.2.2 Steady-State Momentum Equation . .4.2.2.1 Darcy–Weisbach equation . .4.2.2.2 Manning equation . . . . . .4.2.2.3 Other equations . . . . . . .4.2.2.4 Velocity distribution . . . . .4.2.3 Steady-State Energy Equation . . . . .4.2.3.1 Energy grade line . . . . . .4.2.3.2 Specific energy . . . . . . . .4.3 Water-Surface Profiles . . . . . . . . . . . . .4.3.1 Profile Equation . . . . . . . . . . . . .4.3.2 Classification of Water-Surface Profiles4.3.3 Hydraulic Jump . . . . . . . . . . . . .4.3.4 Computation of Water-Surface Profiles4.3.4.1 Direct-integration method .4.3.4.2 Direct-step method . . . . .4.3.4.3 Standard-step method . . . .4.3.4.4 Practical considerations . . .4.3.4.5 Profiles across bridges . . . .Problems . . . . . . . . . . . . . . . . . . . . . . . 595 Design of Drainage Channels5.1 Introduction . . . . . . . . . . . . . . . . . . . .5.2 Basic Principles . . . . . . . . . . . . . . . . . .5.2.1 Best Hydraulic Section . . . . . . . . . .5.2.2 Boundary Shear Stress . . . . . . . . . .5.2.3 Cohesive versus Noncohesive Materials5.2.4 Bends . . . . . . . . . . . . . . . . . . . .5.2.5 Channel Slopes . . . . . . . . . . . . . .5.2.6 Freeboard . . . . . . . . . . . . . . . . .5.3 Design of Channels with Rigid Linings . . . . .5.4 Design of Channels with Flexible Linings . . . .5.4.1 General Design Procedure . . . . . . . .5.4.2 Vegetative Linings and Bare Soil . . . .5.4.3 RECP Linings . . . . . . . . . . . . . . .5.4.4 Riprap, Cobble, and Gravel Linings . . .5.4.5 Gabions . . . . . . . . . . . . . . . . . .166166167167170172177178178180182183187197199203 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012A01 CHIN3219 03 SE FMpage viiContents5.5 Composite Linings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii2052086 Design of Sanitary Sewers6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .6.2 Quantity of Wastewater . . . . . . . . . . . . . . . . . .6.2.1 Residential Sources . . . . . . . . . . . . . . . .6.2.2 Nonresidential Sources . . . . . . . . . . . . . .6.2.3 Inflow and Infiltration (I/I) . . . . . . . . . . . .6.2.4 Peaking Factors . . . . . . . . . . . . . . . . . .6.3 Hydraulics of Sewers . . . . . . . . . . . . . . . . . . .6.3.1 Manning Equation with Constant n . . . . . . .6.3.2 Manning Equation with Variable n . . . . . . .6.3.3 Self-Cleansing . . . . . . . . . . . . . . . . . . .6.3.4 Scour Prevention . . . . . . . . . . . . . . . . .6.3.5 Design Computations for Diameter and Slope .6.3.6 Hydraulics of Manholes . . . . . . . . . . . . .6.4 System Design Criteria . . . . . . . . . . . . . . . . . .6.4.1 System Layout . . . . . . . . . . . . . . . . . . .6.4.2 Pipe Material . . . . . . . . . . . . . . . . . . .6.4.3 Depth of Sanitary Sewer . . . . . . . . . . . . .6.4.4 Diameter and Slope of Pipes . . . . . . . . . . .6.4.5 Hydraulic Criteria . . . . . . . . . . . . . . . . .6.4.6 Manholes . . . . . . . . . . . . . . . . . . . . .6.4.7 Pump Stations . . . . . . . . . . . . . . . . . . .6.4.8 Force Mains . . . . . . . . . . . . . . . . . . . .6.4.9 Hydrogen-Sulfide Control . . . . . . . . . . . .6.4.10 Combined Sewers . . . . . . . . . . . . . . . . .6.5 Design Computations . . . . . . . . . . . . . . . . . . .6.5.1 Design Aids . . . . . . . . . . . . . . . . . . . .6.5.1.1 Manning’s n . . . . . . . . . . . . . . .6.5.1.2 Minimum slope for self-cleansing . .6.5.2 Procedure for System Design . . . . . . . . . .Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292312312312312332332342362362372372372402477 Design of Hydraulic Structures7.1 Introduction . . . . . . . . . . . . . . . . . . . . .7.2 Culverts . . . . . . . . . . . . . . . . . . . . . . . .7.2.1 Hydraulics . . . . . . . . . . . . . . . . . .7.2.1.1 Submerged entrances . . . . . .7.2.1.2 Unsubmerged entrances . . . . .7.2.2 Design Constraints . . . . . . . . . . . . .7.2.3 Sizing Calculations . . . . . . . . . . . . .7.2.3.1 Fixed-headwater method . . . .7.2.3.2 Fixed-flow method . . . . . . . .7.2.3.3 Minimum-performance method7.2.4 Roadway Overtopping . . . . . . . . . . .7.2.5 Riprap/Outlet Protection . . . . . . . . . .7.3 Gates . . . . . . . . . . . . . . . . . . . . . . . . .7.3.1 Free Discharge . . . . . . . . . . . . . . .7.3.2 Submerged Discharge . . . . . . . . . . .7.3.3 Empirical Equations . . . . . . . . . . . .7.4 Weirs . . . . . . . . . . . . . . . . . . . . . . . . .7.4.1 Sharp-Crested Weirs . . . . . . . . . . . .7.4.1.1 Rectangular weirs . . . . . . . .7.4.1.2 V-notch weirs . . . . . . . . . . 81282282282288. 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved

September 14, 2012viiiA01 CHIN3219 03 SE FMpage viiiContents7.4.1.3 Compound weirs . . . . . . . . . . . . . . . . .7.4.1.4 Other types of sharp-crested weirs . . . . . . .7.4.2 Broad-Crested Weirs . . . . . . . . . . . . . . . . . . . .7.4.2.1 Rectangular weirs . . . . . . . . . . . . . . . .7.4.2.2 Compound weirs . . . . . . . . . . . . . . . . .7.4.2.3 Gabion weirs . . . . . . . . . . . . . . . . . . .7.5 Spillways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.5.1 Uncontrolled Spillways . . . .